Author
Listed:
- Ting Ruan
- Qian Liu
- Yanxizi Chang
Abstract
In the contemporary digital era, multimedia platforms, such as social media, online comment sections, and forums, have emerged as the primary arenas wherein users articulate their sentiments and viewpoints. The copious volume of textual data generated by these platforms harbors a wealth of emotional insights, which are paramount in comprehending user behaviors, fine-tuning content dissemination strategies, and elevating user satisfaction. This scholarly paper introduces an innovative framework, denominated ATLSTM-PS, for formulating content dissemination strategies within digital media platforms predicated upon a user-centric emotional perspective. Initially, it accomplishes extracting emotional content from users’ commentaries on digital media platforms, amalgamating the ATT-LSTM method with the attention mechanism, resulting in enhanced feature extraction precision compared to traditional single RNN and LSTM approaches. Subsequently, the framework extracts information at the feature layer by integrating user behavioral and emotional attributes. Following this, by amalgamating user behavioral and emotional features, ATLSTM-PS affects the synthesis of feature layer information. This meticulous amalgamation yields highly precise recommendations that cater to user demand. Empirical results obtained from publicly available and proprietary datasets substantiate that ATLSTM-PS substantially enhances the efficacy of content dissemination through the synergy of distinct attention layers. This research contributes not only a novel technical tool in sentiment analysis but also furnishes a potent methodology for multimedia platforms to refine their information dissemination strategies, thereby augmenting the user experience.
Suggested Citation
Ting Ruan & Qian Liu & Yanxizi Chang, 2025.
"Digital media recommendation system design based on user behavior analysis and emotional feature extraction,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-15, May.
Handle:
RePEc:plo:pone00:0322768
DOI: 10.1371/journal.pone.0322768
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322768. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.