IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0322115.html
   My bibliography  Save this article

A deep learning-based algorithm for the detection of personal protective equipment

Author

Listed:
  • Bo Tong
  • Guan Li
  • Xiangli Bu
  • Yang Wang
  • Xingchen Yu

Abstract

Personal protective equipment (PPE) is critical for ensuring the safety of construction workers. However, site surveillance images from construction sites often feature multi-size and multi-scale targets, leading to low detection accuracy for PPE in existing models. To address this issue, this paper proposes an improved model based on YOLOv8n.By enriching feature diversity and enhancing the model’s adaptability to geometric transformations, the detection accuracy is improved.A Multi-Scale Group Convolution Module (MSGP) was designed to extract multi-level features using different convolution kernels. A Multi-Scale Feature Diffusion Pyramid Network (MFDPN) was developed, which aggregates multi-scale features through the Multiscale Feature Focus (MFF) module and diffuses them across scales, providing each scale with detailed contextual information. A customized Task Alignment Module was introduced to integrate interactive features, optimizing both classification and localization tasks. The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. Additionally, structured pruning techniques were applied to the model at varying levels, further reducing computational and parameter loads. Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. The proposed MFD-YOLO(1.5) model achieves significant progress in detecting personal protective equipment on construction sites, with a substantial reduction in parameter count, making it suitable for deployment on resource-constrained edge devices.

Suggested Citation

  • Bo Tong & Guan Li & Xiangli Bu & Yang Wang & Xingchen Yu, 2025. "A deep learning-based algorithm for the detection of personal protective equipment," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-22, May.
  • Handle: RePEc:plo:pone00:0322115
    DOI: 10.1371/journal.pone.0322115
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0322115
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0322115&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0322115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.