Author
Listed:
- Sri Harsha Boppana
- Divyansh Tyagi
- Sachin Komati
- Sri Lasya Boppana
- Ritwik Raj
- C David Mintz
Abstract
Introduction: In older patients, postoperative delirium (POD) is a major complication that can result in greater morbidity, longer hospital stays, and higher healthcare expenses. Accurate prediction models for POD can enhance patient outcomes by guiding preventative strategies. This study utilizes advanced machine learning techniques to develop a predictive model for POD using comprehensive perioperative data. Methods: We examined information from the National Surgical Quality Improvement Program (NSQIP), which included 17,000 patients who were over 65 and undergoing different types of surgery. The dataset included variables such as patient demographics (age, sex), comorbidities (diabetes, cardiovascular diseases, pre-existing dementia), surgical details (type, duration), anesthesia type and dosage, and postoperative outcomes. Categorical variables were encoded numerically, and data standardization was applied to ensure normal distribution. A range of machine learning approaches were assessed such as Decision Trees and Random Forests. Based on the greatest Area Under the Curve (AUC) from Receiver Operating Characteristic (ROC) analysis, the final model was chosen. Hyperparameter tuning was performed using GridSearchCV, optimizing parameters like max_depth, min_child_weight, and gamma for XGBoost model. Results: The optimized XGBoost model demonstrated superior performance, achieving an AUC of 0.85. Key hyperparameters included min_child_weight = 1, max_depth = 5, gamma = 0.3, subsample = 0.9, colsample_bytree = 0.7, reg_alpha = 0.0007, learning_rate = 0.14, and n_estimators = 123. The model exhibited an accuracy of 0.926, recall of 0.945, precision of 0.934, and an F1-score of 0.939, depicting a higher level of predictive accuracy & balance between sensitivity and specificity. Conclusion: This study proposes a strong XGBoost-based model to predict POD in older surgical patients, demonstrating the potential of Machine Learning (ML) in clinical risk assessment. With the help of the model’s balanced performance indicators and high accuracy, physicians may identify high-risk patients and promptly execute interventions in clinical settings. Subsequent investigations ought to concentrate on integration into clinical workflows and external validation.
Suggested Citation
Sri Harsha Boppana & Divyansh Tyagi & Sachin Komati & Sri Lasya Boppana & Ritwik Raj & C David Mintz, 2025.
"AI-delirium guard: Predictive modeling of postoperative delirium in elderly surgical patients,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-15, June.
Handle:
RePEc:plo:pone00:0322032
DOI: 10.1371/journal.pone.0322032
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.