Author
Listed:
- Huiwen Xu
- Jaeri Lee
- U Kang
Abstract
How can we perform unsupervised domain adaptation when transferring a black-box source model to a target domain? Black-box Unsupervised Domain Adaptation focuses on transferring the labels derived from a pre-trained black-box source model to an unlabeled target domain. The problem setting is motivated by privacy concerns associated with accessing and utilizing source data or source model parameters. Recent studies typically train the target model by mimicking the labels derived from the black-box source model, which often contain noise due to domain gaps between the source and the target. Directly exploiting such noisy labels or disregarding them may lead to a decrease in the model’s performance. We propose Threshold-Based Exploitation of Noisy Predictions (TEN), a method to accurately learn the target model with noisy labels in Black-box Unsupervised Domain Adaptation. To ensure the preservation of information from the black-box source model, we employ a threshold-based approach to distinguish between clean labels and noisy labels, thereby allowing the transfer of high-confidence knowledge from both labels. We utilize a flexible thresholding approach to adjust the threshold for each class, thereby obtaining an adequate amount of clean data for hard-to-learn classes. We also exploit knowledge distillation for clean data and negative learning for noisy labels to extract high-confidence information. Extensive experiments show that TEN outperforms baselines with an accuracy improvement of up to 9.49%.
Suggested Citation
Huiwen Xu & Jaeri Lee & U Kang, 2025.
"Threshold-based exploitation of noisy label in black-box unsupervised domain adaptation,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-15, May.
Handle:
RePEc:plo:pone00:0321987
DOI: 10.1371/journal.pone.0321987
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.