IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0321942.html
   My bibliography  Save this article

A novel dual-branch network for comprehensive spatiotemporal information integration for EEG-based epileptic seizure detection

Author

Listed:
  • Xiaobing Deng

Abstract

Epilepsy is a neurological disorder characterized by recurrent seizures caused by abnormal brain activity, which can severely affects people’s normal lives. To improve the lives of these patients, it is necessary to develop accurate methods to predict seizures. Electroencephalography (EEG), as a non-invasive and real-time technique, is crucial for the early diagnosis of epileptic seizures by monitoring abnormal brain activity associated with seizures. Deep learning EEG-based detection methods have made significant progress, but still face challenges such as the underutilization of spatial relationships, inter-individual physiological variability, and sequence intricacies. To tackle these challenges, we introduce the Dual-Branch Deepwalk-Transformer Spatiotemporal Fusion Network (Deepwalk-TS), which effectively integrates spatiotemporal information from EEG signals to enable accurate and reliable epilepsy diagnosis. Specifically, the Spatio-branch introduces an adaptive multi-channel deepwalk-based graph framework for capturing intricate relationships within EEG channels. Furthermore, we develop a Guided-CNN Transformer branch to optimize the utilization of temporal sequence features. The novel dual-branch networks co-optimize features and achieve mutual gains through fusion strategies. The results of extensive experiments demonstrate that our method achieves the state-of-the-art performance in multiple datasets, such as achieving 99.54% accuracy, 99.07% sensitivity and 98.87% specificity. This shows that the Deepwalk-TS model achieved accurate epilepsy detection while analyzing the spatiotemporal relationship between EEG and seizures. The method further offers an optimized solution for addressing health issues related to seizure diagnosis.

Suggested Citation

  • Xiaobing Deng, 2025. "A novel dual-branch network for comprehensive spatiotemporal information integration for EEG-based epileptic seizure detection," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0321942
    DOI: 10.1371/journal.pone.0321942
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321942
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0321942&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0321942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.