Author
Listed:
- Tanver Ahmed
- Adiba Mahjabin Nitu
- Masud Ibn Afjal
- Md Abdulla Al Mamun
- Md Palash Uddin
Abstract
Deep learning has revolutionized the classification of land cover objects in hyperspectral images (HSIs), particularly by managing the complex 3D cube structure inherent in HSI data. Despite these advances, challenges such as data redundancy, computational costs, insufficient sample sizes, and the curse of dimensionality persist. Traditional 2D Convolutional Neural Networks (CNNs) struggle to fully leverage the interconnections between spectral bands in HSIs, while 3D CNNs, which capture both spatial and spectral features, require more sophisticated design. To address these issues, we propose a novel multilayered, multi-branched 2D-3D CNN model in this paper that integrates Segmented Principal Component Analysis (SPCA) and the minimum-Redundancy-Maximum-Relevance (mRMR) technique. This approach explores the local structure of the data and ranks features by significance. Our approach then hierarchically processes these features: the shallow branch handles the least significant features, the deep branch processes the most critical features, and the mid branch deals with the remaining features. Experimental results demonstrate that our proposed method outperforms most of the state-of-the-art techniques on the Salinas Scene, University of Pavia, and Indian Pines hyperspectral image datasets achieving 100%, 99.94%, and 99.12% Overall Accuracy respectively.
Suggested Citation
Tanver Ahmed & Adiba Mahjabin Nitu & Masud Ibn Afjal & Md Abdulla Al Mamun & Md Palash Uddin, 2025.
"Segmentation-based deep 2D-3D multibranch learning approach for effective hyperspectral image classification,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-24, May.
Handle:
RePEc:plo:pone00:0321559
DOI: 10.1371/journal.pone.0321559
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321559. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.