Author
Listed:
- Marc Weitz
- Shaheen Syed
- Laila A Hopstock
- Bente Morseth
- André Henriksen
- Alexander Horsch
Abstract
Accelerometers are frequently used to assess physical activity in large epidemiological studies. They can monitor movement patterns and cycles over several days under free-living conditions and are usually either worn on the wrist or the hip. While wrist-worn accelerometers have been frequently used to additionally assess sleep and time in bed behavior, hip-worn accelerometers have been widely neglected for this task due to their primary focus on physical activity. Here, we present a new method with the objective to identify the time in bed to enable further analysis options for large-scale studies using hip-placement like time in bed or sedentary time analyses. We introduced new and accelerometer-specific data augmentation methods, such as mimicking a wrongly worn accelerometer, additional noise, and random croping, to improve training and generalization performance. Subsequently, we trained a neural network model on a sample from the population-based Tromsø Study and evaluated it on two additional datasets. Our algorithm achieved an accuracy of 94% on the training data, 92% on unseen data from the same population and comparable results to consumer-wearable data obtained from a demographically different population. Generalization performance was overall good, however, we found that on a few particular days or participants, the trained model fundamentally over- or underestimated time in bed (e.g., predicted all or nothing as time in bed). Despite these limitations, we anticipate our approach to be a starting point for more sophisticated methods to identify time in bed or at some point even sleep from hip-worn acceleration signals. This can enable the re-use of already collected data, for example, for longitudinal analyses where sleep-related research questions only recently got into focus or sedentary time needs to be estimated in 24 h wear protocols.
Suggested Citation
Marc Weitz & Shaheen Syed & Laila A Hopstock & Bente Morseth & André Henriksen & Alexander Horsch, 2025.
"Automatic time in bed detection from hip-worn accelerometers for large epidemiological studies: The Tromsø Study,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-11, May.
Handle:
RePEc:plo:pone00:0321558
DOI: 10.1371/journal.pone.0321558
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321558. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.