Author
Listed:
- Fengning Liang
- Yaru Cao
- Teng Zhao
- Qian Xu
- Hong Zhu
Abstract
The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suffer from various limitations, such as the data waste and instability issues. To address such issues, we present a semisupervised adaptive deep learning model based on radiomics and rough sets for predicting the mutation status of IDH1 from MRI data. Firstly, our model uses a rough set algorithm to remove the redundant medical image features extracted by radiomics, while adding pseudo-labels for non-labeled data via statistical. T-tests to mitigate the common issue of insufficient datasets in medical imaging analysis. Then, it applies a Sand Cat Swarm Optimization (SCSO) algorithm to optimize the weight of pseudo-label data. Finally, our model adopts U-Net and CRNN to construct UCNet, a semisupervised classification model for classifying IDH1 mutation status. To validate our models, we use a preoperative MRI dataset with 316 glioma patients to evaluate the performance. Our study suggests that the prediction accuracy of glioma IDH1 mutation status reaches 95.63%. Our experimental results suggest that the study can effectively improve the utilization of glioma imaging data and the accuracy of intelligent diagnosis of glioma IDH1 mutation status.
Suggested Citation
Fengning Liang & Yaru Cao & Teng Zhao & Qian Xu & Hong Zhu, 2025.
"Semisupervised adaptive learning models for IDH1 mutation status prediction,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-16, May.
Handle:
RePEc:plo:pone00:0321404
DOI: 10.1371/journal.pone.0321404
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321404. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.