Author
Listed:
- Pingping Yan
- Xiangming Qi
- Liang Jiang
Abstract
In the domain of remote sensing image small target detection, challenges such as difficulties in extracting features of small targets, complex backgrounds that easily lead to confusion with targets, and high computational complexity with significant resource consumption are prevalent. We propose a lightweight small target detection algorithm for remote sensing images that combines GSConv and PConv, named LI-YOLOv8. Using YOLOv8n as the baseline algorithm, the activation function SiLU in the CBS at the backbone network’s SPPF is replaced with ReLU, which reduces interdependencies among parameters. Then, RFAConv is embedded after the first CBS to expand the receptive field and extract more features of small targets. An efficient Multi-Scale Attention (EMA) mechanism is embedded at the terminal of C2f within the neck network to integrate more detailed information, enhancing the focus on small targets. The head network incorporates a lightweight detection head, GP-Detect, which combines GSConv and PConv to decrease the parameter count and computational demand. Integrating Inner-IoU and Wise-IoU v3 to design the Inner-Wise IoU loss function, replacing the original CIoU loss function. This approach provides the algorithm with a gain distribution strategy, focuses on anchor boxes of ordinary quality, and strengthens generalization capability. We conducted ablation and comparative experiments on the public datasets RSOD and NWPU VHR-10. Compared to YOLOv8, our approach achieved improvements of 7.6% and 2.8% in mAP@0.5, and increases of 2.1% and 1.1% in mAP@0.5:0.95. Furthermore, Parameters and GFLOPs were reduced by 10.0% and 23.2%, respectively, indicating a significant enhancement in detection accuracy along with a substantial decrease in both parameters and computational costs. Generalization experiments were conducted on the TinyPerson, LEVIR-ship, brain-tumor, and smoke_fire_1 datasets. The mAP@0.5 metric improved by 2.6%, 5.3%, 2.6%, and 2.3%, respectively, demonstrating the algorithm’s robust performance.
Suggested Citation
Pingping Yan & Xiangming Qi & Liang Jiang, 2025.
"LI-YOLOv8: Lightweight small target detection algorithm for remote sensing images that combines GSConv and PConv,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-25, May.
Handle:
RePEc:plo:pone00:0321026
DOI: 10.1371/journal.pone.0321026
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321026. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.