Author
Listed:
- Toheeb Salahudeen
- Maher Maalouf
- Ibrahim (Abe) M Elfadel
- Herbert F Jelinek
Abstract
Depression presents a significant challenge to global mental health, often intertwined with factors including oxidative stress. Although the precise relationship with mitochondrial pathways remains elusive, recent advances in machine learning present an avenue for further investigation. This study employed advanced machine learning techniques to classify major depressive disorders based on clinical indicators and mitochondrial oxidative stress markers. Six machine learning algorithms, including Random Forest, were applied and their performance was investigated in balanced and unbalanced data sets with respect to binary and multiclass classification scenarios. Results indicate promising accuracy and precision, particularly with Random Forest on balanced data. RF achieved an average accuracy of 92.7% and an F1 score of 83.95% for binary classification, 90.36% and 90.1%, respectively, for the classification of three classes of severity of depression and 89.76% and 88.26%, respectively, for the classification of five classes. Including only oxidative stress markers resulted in accuracy and an F1 score of 79.52% and 80.56%, respectively. Notably, including mitochondrial peptides alongside clinical factors significantly enhances predictive capability, shedding light on the interplay between depression severity and mitochondrial oxidative stress pathways. These findings underscore the potential for machine learning models to aid clinical assessment, particularly in individuals with comorbid conditions such as hypertension, diabetes mellitus, and cardiovascular disease.
Suggested Citation
Toheeb Salahudeen & Maher Maalouf & Ibrahim (Abe) M Elfadel & Herbert F Jelinek, 2025.
"Predicting depression severity using machine learning models: Insights from mitochondrial peptides and clinical factors,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-29, May.
Handle:
RePEc:plo:pone00:0320955
DOI: 10.1371/journal.pone.0320955
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320955. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.