Author
Listed:
- Laura J Word
- Clinton M Willis
- Richard S Judson
- Logan J Everett
- Sarah E Davidson-Fritz
- Derik E Haggard
- Bryant A Chambers
- Jesse D Rogers
- Joseph L Bundy
- Imran Shah
- Nisha S Sipes
- Joshua A Harrill
Abstract
Recent advances in transcriptomics technologies allow for whole transcriptome gene expression profiling using targeted sequencing techniques, which is becoming increasingly popular due to logistical ease of data acquisition and analysis. As data from these targeted sequencing platforms accumulates, it is important to evaluate their similarity to traditional whole transcriptome RNA-seq. Thus, we evaluated the comparability of TempO-seq data from cell lysates to traditional RNA-Seq from purified RNA using baseline gene expression profiles. First, two TempO-seq data sets that were generated several months apart at different read depths were compared for six human cell lines. The average Pearson correlation was 0.93 (95% CI: 0.90–0.96) and principal component analysis (PCA) showed that these two TempO-seq data sets were highly reproducible and could be combined. Next, TempO-seq data was compared to RNA-Seq data for 39 human cell lines. The log2 normalized expression data for 19,290 genes within both platforms were well correlated between TempO-seq and RNA-seq (Pearson correlation 0.77, 95% CI: 0.76–0.78), and the majority of genes (15,480 genes, 80%) had concordant gene expression levels. PCA showed a platform divergence, but this was readily resolved by calculating relative log2 expression (RLE) of genes compared to the average expression across cell lines in each platform. Application of gene ontology analysis revealed that ontologies associated with histone and ribosomal functions were enriched for the 20% of genes with non-concordant expression levels (3,810 genes). On the other hand, gene ontologies annotated to cellular structure functions were enriched for genes with concordant expression levels between the platforms. In conclusion, we found TempO-seq baseline expression data to be reproducible at different read depths and found TempO-seq RLE data from lysed cells to be comparable to RNA-seq RLE data from purified RNA across 39 cell lines, even though the datasets were generated by different laboratories using different cell stocks.
Suggested Citation
Laura J Word & Clinton M Willis & Richard S Judson & Logan J Everett & Sarah E Davidson-Fritz & Derik E Haggard & Bryant A Chambers & Jesse D Rogers & Joseph L Bundy & Imran Shah & Nisha S Sipes & Jos, 2025.
"TempO-seq and RNA-seq gene expression levels are highly correlated for most genes: A comparison using 39 human cell lines,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-22, May.
Handle:
RePEc:plo:pone00:0320862
DOI: 10.1371/journal.pone.0320862
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320862. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.