Author
Listed:
- Mahwish Ilyas
- Muhammad Ramzan
- Mohamed Deriche
- Khalid Mahmood
- Anam Naz
Abstract
Leukemia is a serious problem affecting both children and adults, leading to death if left untreated. Leukemia is a kind of blood cancer described by the rapid proliferation of abnormal blood cells. An early, trustworthy, and precise identification of leukemia is important to treating and saving patients’ lives. Acute and myelogenous lymphocytic, chronic and myelogenous leukemia are the four kinds of leukemia. Manual inspection of microscopic images is frequently used to identify these malignant growth cells. Leukemia symptoms include fatigue, a lack of enthusiasm, a dull appearance, recurring illnesses, and easy blood loss. Identifying subtypes of leukemia for specialized therapy is one of the hurdles in this area. The suggested work predicts and classifies leukemia subtypes in gene data CuMiDa (GSE9476) using feature selection and ML techniques. The Curated Microarray Database (CuMiDa) collected 64 samples representing five classes of leukemia genes out of 22283 genes. The proposed approach utilizes the 25 most differentiating selected features for classification using machine and deep learning techniques. This study has a classification accuracy of 96.15% using Random Fores, 92.30 using Linear Regression, 96.15% using SVM, and 100% using LSTM. Deep learning methods have been shown to outperform traditional methods in leukemia gene classification by utilizing specific features.
Suggested Citation
Mahwish Ilyas & Muhammad Ramzan & Mohamed Deriche & Khalid Mahmood & Anam Naz, 2025.
"An efficient leukemia prediction method using machine learning and deep learning with selected features,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-18, May.
Handle:
RePEc:plo:pone00:0320669
DOI: 10.1371/journal.pone.0320669
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320669. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.