Author
Listed:
- Gang Xu
- Biao Leng
- Zhang Xiong
Abstract
3D object detection based solely on image data presents a significant challenge in computer vision, primarily due to the need to integrate geometric perception processes derived from visual inputs. The key to overcoming this challenge lies in effectively capturing the geometric relationships across multiple viewpoints, thereby establishing strong geometric priors. Current methods commonly back-project voxels onto images to align voxel-pixel features, yet during this process, pixel features are insufficiently involved in learning, leading to a decrease in geometric perception accuracy and, consequently, impacting detection performance. To address this limitation, we propose a novel network framework called ImVoxelGNet. This framework first integrates features projected onto pixels via a expansion operation, compensating for the pixel information inadequately utilized in traditional back-projection methods, thus enabling more precise learning of spatial geometric features. Additionally, we design an implicit geometric perception structure that further refines the spatial geometric features obtained after integrating image features, learning the occupancy relationships in spatial voxels and updating them within the spatial features. Finally, we generate the final prediction results by combining a detection head with 3D convolutions. Evaluation on the ScanNetV2 multi-view 3D object detection dataset demonstrates that ImVoxelGNet achieves a performance improvement of up to 2.2% in mean average precision (mAP). This improvement effectively demonstrates the efficacy of our method in significantly enhancing 3D object detection performance through improved geometric perception and comprehensive scene understanding. Codes and data are released in https://github.com/xug-coder/ImVoxelGNet.
Suggested Citation
Gang Xu & Biao Leng & Zhang Xiong, 2025.
"ImVoxelGNet: Image to voxels geometry-aware projection for multi-view RGB-based 3D object detection,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-17, May.
Handle:
RePEc:plo:pone00:0320589
DOI: 10.1371/journal.pone.0320589
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320589. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.