Author
Abstract
This study proposes an advanced elevator fault precursor prediction method integrating Variational Mode Decomposition (VMD), Bidirectional Long Short-Term Memory (BILSTM), and an Autoencoder with an Attention Mechanism (AEAM), collectively referred to as the VMD-BILSTM-AEAM algorithm. This model addresses the challenges of feature redundancy and noise interference in elevator operation data, improving the stability and accuracy of fault predictions. Using a dataset of elevator operation parameters, including current, voltage, and running speed, the model utilizes the Attribute Correlation Density Ranking (ACDR) method for feature selection and the TSO-optimized VMD for denoising, enhancing data quality. Cross-validation and statistical analyses, including confidence interval calculations, were employed to validate the robustness of the model. The results demonstrate that the VMD-BILSTM-AEAM algorithm achieves a mean True Positive Rate (TPR) of 0.919 with a 95% confidence interval of 0.915 to 0.924, a mean False Positive Rate (FPR) of 0.090 with a 95% confidence interval of 0.087 to 0.092, and a mean Area Under the Curve (AUC) of 0.919 with a 95% confidence interval of 0.915 to 0.923. These performance metrics indicate a significant improvement over traditional and other deep learning models, confirming the model’s superiority in predictive maintenance of elevators. The robust capability of the VMD-BILSTM-AEAM algorithm to accurately process and analyze time-series data, even in the presence of noise, highlights its potential for broader applications in predictive maintenance and fault detection across various domains.
Suggested Citation
Hao Cao & Xiaoyan Du, 2025.
"Elevator fault precursor prediction based on improved LSTM-AE algorithm and TSO-VMD denoising technique,"
PLOS ONE, Public Library of Science, vol. 20(4), pages 1-20, April.
Handle:
RePEc:plo:pone00:0320566
DOI: 10.1371/journal.pone.0320566
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320566. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.