Author
Listed:
- Jinfeng Xiong
- Jingbin Song
- Zhiqiang Zhang
Abstract
Braking energy recovery is crucial for improving the energy efficiency and extending the range of electric vehicles. If a large amount of braking energy is wasted, it will lead to problems such as reduced range and increased battery burden for electric vehicles. Therefore, an electric vehicle braking energy recovery control model that integrates fuzzy control algorithm with genetic firefly algorithm is proposed. Experimental analysis showed that the decrease in the state of charge of the model was 12.44%, and the braking energy recovery rate reached 52.1% in practical applications. Based on the above data, the proposed method can effectively control the amount of energy recovery. In addition, when the system chip value was 10%, the total amount of recovered energy at the battery end was the highest. Conversely, the total amount of recovered energy at the battery end was relatively small. In summary, the designed electric vehicle braking energy recovery control model can effectively control the amount of braking energy recovery of electric vehicles, ensuring the maximum recovery while also considering the durability and driving stability of the vehicle battery. The method can effectively extend mileage range in the electric vehicle industry, promoting the development and technological innovation of the new energy industry.
Suggested Citation
Jinfeng Xiong & Jingbin Song & Zhiqiang Zhang, 2025.
"Electric vehicle braking energy recovery control method integrating fuzzy control and improved firefly algorithm,"
PLOS ONE, Public Library of Science, vol. 20(3), pages 1-22, March.
Handle:
RePEc:plo:pone00:0320537
DOI: 10.1371/journal.pone.0320537
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.