Author
Listed:
- Alexander Goldberg
- Ivan Stelmakh
- Kyunghyun Cho
- Alice Oh
- Alekh Agarwal
- Danielle Belgrave
- Nihar B Shah
Abstract
Is it possible to reliably evaluate the quality of peer reviews? We study this question driven by two primary motivations – incentivizing high-quality reviewing using assessed quality of reviews and measuring changes to review quality in experiments. We conduct a large scale study at the NeurIPS 2022 conference, a top-tier conference in machine learning, in which we invited (meta)-reviewers and authors to voluntarily evaluate reviews given to submitted papers. First, we conduct a randomized controlled trial to examine bias due to the length of reviews. We generate elongated versions of reviews by adding substantial amounts of non-informative content. Participants in the control group evaluate the original reviews, whereas participants in the experimental group evaluate the artificially lengthened versions. We find that lengthened reviews are scored (statistically significantly) higher quality than the original reviews. Additionally, in analysis of observational data we find that authors are positively biased towards reviews recommending acceptance of their own papers, even after controlling for confounders of review length, quality, and different numbers of papers per author. We also measure disagreement rates between multiple evaluations of the same review of 28% – 32%, which is comparable to that of paper reviewers at NeurIPS. Further, we assess the amount of miscalibration of evaluators of reviews using a linear model of quality scores and find that it is similar to estimates of miscalibration of paper reviewers at NeurIPS. Finally, we estimate the amount of variability in subjective opinions around how to map individual criteria to overall scores of review quality and find that it is roughly the same as that in the review of papers. Our results suggest that the various problems that exist in reviews of papers – inconsistency, bias towards irrelevant factors, miscalibration, subjectivity – also arise in reviewing of reviews.
Suggested Citation
Alexander Goldberg & Ivan Stelmakh & Kyunghyun Cho & Alice Oh & Alekh Agarwal & Danielle Belgrave & Nihar B Shah, 2025.
"Peer reviews of peer reviews: A randomized controlled trial and other experiments,"
PLOS ONE, Public Library of Science, vol. 20(4), pages 1-18, April.
Handle:
RePEc:plo:pone00:0320444
DOI: 10.1371/journal.pone.0320444
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0320444. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.