Author
Listed:
- Anand Singh
- Mohammad Sajid
- Naveen Kumar Tiwari
- Anurag Shukla
Abstract
The current research uses the Grünwald–Letnikov (GL) fractional differential mask to improve satellite and medical images. One of the important image enhancement methods in digital image processing is texture enhancement. A fractional differential-based two-dimensional discrete gradient operator is based on the definition of Grünwald–Letnikov (GL) interpretation of fractional calculus, which is extended from a one-dimensional operator through the analysis of its spectrum to improve the image texture. Which then extracts more subtle texture information, and gets around the lack of a classical gradient operator. Based on the GL fractional differential, an approximate two-dimensional isotropic gradient operator mask was created using the GL fractional derivative, the technique generates 3×3 and 5×5 pixel-sized masks that preserve the correlation between neighboring pixels. The strength of the mask, which was a variable and non-linear filter, could be changed by varying the intensity factor to enhance the image. Experimental results show that the operator may emphasize the texture and obtain more complex information. Compared to the conventional classical methods, the suggested way has an excellent promotional effect on texture enhancement compared to the previous method on grayscale images.
Suggested Citation
Anand Singh & Mohammad Sajid & Naveen Kumar Tiwari & Anurag Shukla, 2025.
"Single channel medical images enhancement using fractional derivatives,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-19, May.
Handle:
RePEc:plo:pone00:0319990
DOI: 10.1371/journal.pone.0319990
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319990. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.