Author
Listed:
- Ahmed Abdelaziz
- Alia Nabil Mahmoud
- Vitor Santos
- Mario M Freire
Abstract
The increasing importance of deep learning in software development has greatly improved software quality by enabling the efficient identification of defects, a persistent challenge throughout the software development lifecycle. This study seeks to determine the most effective model for detecting defects in software projects. It introduces an intelligent approach that combines Temporal Convolutional Networks (TCN) with Antlion Optimization (ALO). TCN is employed for defect detection, while ALO optimizes the network’s weights. Two models are proposed to address the research problem: (a) a basic TCN without parameter optimization and (b) a hybrid model integrating TCN with ALO. The findings demonstrate that the hybrid model significantly outperforms the basic TCN in multiple performance metrics, including area under the curve, sensitivity, specificity, accuracy, and error rate. Moreover, the hybrid model surpasses state-of-the-art methods, such as Convolutional Neural Networks, Gated Recurrent Units, and Bidirectional Long Short-Term Memory, with accuracy improvements of 21.8%, 19.6%, and 31.3%, respectively. Additionally, the proposed model achieves a 13.6% higher area under the curve across all datasets compared to the Deep Forest method. These results confirm the effectiveness of the proposed hybrid model in accurately detecting defects across diverse software projects.
Suggested Citation
Ahmed Abdelaziz & Alia Nabil Mahmoud & Vitor Santos & Mario M Freire, 2025.
"Integrating temporal convolutional networks with metaheuristic optimization for accurate software defect prediction,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-38, May.
Handle:
RePEc:plo:pone00:0319562
DOI: 10.1371/journal.pone.0319562
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319562. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.