IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0319519.html
   My bibliography  Save this article

Machine learning approach for the prediction of 30-day mortality in patients with sepsis-associated delirium

Author

Listed:
  • Xiaoli Shen
  • Dongfeng Shang
  • Weize Sun
  • Shuyan Ru

Abstract

This study aimed to develop models for predicting the 30-day mortality of sepsis-associated delirium (SAD) by multiple machine learning (ML) algorithms. On the whole, a cohort of 3,197 SAD patients were collected from the Medical Information Mart for Intensive Care (MIMIC)-IV database. Among them, a total of 659 (20.61%) patients died following SAD. The patients who died were about 73.00 (62.00, 82.00) years old and mostly male (56.75%). Recursive feature elimination (RFE) was used to distinguish risk factors. Subsequently, six ML algorithms including artificial neural network (NNET), gradient boosting machine (GBM), adaptive boosting (Ada), random forest (RF), eXtreme Gradient Boosting (XGB) and logistic regression (LR) were employed to establish models to predict the 30-day mortality of SAD. The performance of models was assessed via both discrimination and calibration by cross-validation with 100 resamples. Overall, 10 independent predictors, including Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA), anion gap (AG), continuous renal replacement therapy (CRRT), temperature, mean corpuscular hemoglobin concentration (MCHC), vasopressor, blood urea nitrogen (BUN), base excess (BE), and bicarbonate were identified as independent predictors for the 30-day mortality of SAD. The validation cohort demonstrated that all these six models had relatively favorable differentiation, while among them, the GBM model had the highest area under the curve (AUC) of 0.845 (95% Confidence Interval (CI): 0.816, 0.874). Furthermore, the calibration curve of these six models was close to the diagonal line in the validation sets. As for decision curve analysis, the predictive models were clinically useful as well. Based on real-world research, we developed ML models to provide personalized predictions of delirium-related mortality in sepsis patients, potentially enabling clinicians to identify high-risk SAD patients more promptly.

Suggested Citation

  • Xiaoli Shen & Dongfeng Shang & Weize Sun & Shuyan Ru, 2025. "Machine learning approach for the prediction of 30-day mortality in patients with sepsis-associated delirium," PLOS ONE, Public Library of Science, vol. 20(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0319519
    DOI: 10.1371/journal.pone.0319519
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0319519
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0319519&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0319519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.