Author
Listed:
- Sanaz Khalifani
- Reza Darvishzadeh
- Majid Montaseri
- Sarvin Zaman Zad Ghavidel
- Hamid Hatami Maleki
- Mojtaba Kordrostami
Abstract
Prediction of crop yield is essential for decision-makers to ensure food security and provides valuable information to farmers about factors affecting high yields. This research aimed to predict sunflower grain yield under normal and salinity stress conditions using three modeling techniques: artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP). A pot experiment was conducted with 96 inbred sunflower lines (generation six) derived from crossing two parent lines, over a single growing season. Ten morphological traits—including hundred-seed weight (HSW), number of leaves, leaf length (LL) and width, petiole length, stem diameter, plant height, head dry weight (HDW), days to flowering, and head diameter—were measured as input variables to predict grain yield. Salinity stress was induced by applying irrigation water with electrical conductivity (EC) levels of 2 dS/m (control) and 8 dS/m (stress condition) using NaCl, applied after the seedlings reached the 8-leaf stage. The GEP model demonstrated the highest precision in predicting sunflower grain yield, with coefficient of determination (R2) values of 0.803 and 0.743, root mean squared error (RMSE) of 4.115 and 4.022, and mean absolute error (MAE) of 3.177 and 2.803 under normal conditions and salinity stress, respectively, during the testing phase. Sensitivity analysis using the GEP model identified LL, head diameter, HSW, and HDW as the most significant parameters influencing grain yield under salinity stress. Therefore, the GEP model provides a promising tool for predicting sunflower grain yield, potentially aiding in yield improvement programs under varying environmental conditions.
Suggested Citation
Sanaz Khalifani & Reza Darvishzadeh & Majid Montaseri & Sarvin Zaman Zad Ghavidel & Hamid Hatami Maleki & Mojtaba Kordrostami, 2025.
"Advanced computational approaches for predicting sunflower yield: Insights from ANN, ANFIS, and GEP in normal and salinity stress environments,"
PLOS ONE, Public Library of Science, vol. 20(2), pages 1-19, February.
Handle:
RePEc:plo:pone00:0319331
DOI: 10.1371/journal.pone.0319331
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319331. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.