Author
Listed:
- Sruthi Krishnan
- Mohammed Abdel-Hafez
- Matti Hämäläinen
Abstract
Wireless capsule endoscopy (WCE) is a revolutionary field that aids in treating gastrointestinal disorders. For the development of a futuristic endoscopic capsule, identifying the location of abnormality is challenging yet a crucial step in determining the treatment procedure. Though the present-day wireless capsule endoscopes certified for endoscopic procedures predominantly work on the Medical Implant Communication System (MICS) band, the applications based on the Ultra-Wide Band (UWB) are gaining popularity for their immense possibilities. While received signal strength, time of arrival, phase of arrival, and angle of arrival are the basic parameters applied in research for location estimation of WCE, this paper uses a time difference of arrival (TDoA) approach using the Chan algorithm. To test the effectiveness of the algorithm, a series of UWB propagation experiments are performed utilizing human voxel models to find out the variance in distance error using an advanced electromagnetic simulation environment, which is then applied as the error to the distance estimate of the Chan algorithm, and the performance is analysed using different cases. Positioning receivers in three rows reduces the estimation error by 44%, and positioning the reference receiver in the middle row reduces it by 33%. The algorithm performance is observed for different variances in the distance estimation using different numbers of receivers, and the results are compared to the Cramér-Rao lower bound (CRLB). The calculated error in thickness from the different sections of abdominal tissues of the individual voxel models is applied to the distance estimates from the corresponding receiver sections prior to the WCE location estimation. The RMSE in WCE location estimation is found for individual voxel models, and the error is observed to reduce approximately from 4 mm to 1 mm, with variations in individual models, when the number of receivers are increased from 9 to 33.
Suggested Citation
Sruthi Krishnan & Mohammed Abdel-Hafez & Matti Hämäläinen, 2025.
"Location estimation of UWB-based wireless capsule endoscopy using TDoA in various gastrointestinal simulation models,"
PLOS ONE, Public Library of Science, vol. 20(3), pages 1-32, March.
Handle:
RePEc:plo:pone00:0319167
DOI: 10.1371/journal.pone.0319167
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.