Author
Listed:
- Yi Xin
- Monika E Grabowska
- Srushti Gangireddy
- Matthew S Krantz
- V Eric Kerchberger
- Alyson L Dickson
- Qiping Feng
- Zhijun Yin
- Wei-Qi Wei
Abstract
Topic modeling utilizes unsupervised machine learning to detect underlying themes within texts and has been deployed routinely to analyze social media for insights into healthcare issues. However, the inherent messiness of social media hinders the full realization of this technique’s potential. As such, we hypothesized that restricting medical concepts in social media texts to specific related semantic types and applying topic modeling to these concepts could be a feasible approach to overcome the challenge of traditional topic modeling for social media texts. Therefore, we developed a semantic-type-based topic modeling pipeline to discover self-reported health-related topics. This pipeline integrated semantic type information and Systematized Medical Nomenclature for Medicine (SNOMED) precoordinated expressions into a traditional topic modeling approach to enhance effectiveness in clustering meaningful, distinct topics. Using social media texts regarding statins for illustration, we evaluated the efficacy of this new approach and validated a newly identified topic using real-world clinical data. Based on expert evaluations, this approach resulted in more novel, distinguishable, and meaningful health-related topics compared to traditional topic modeling. In addition, our electronic health record validation for a newly identified topic in two real-world clinical databases indicated that statin users had a higher prevalence of depression or anxiety compared to matched non-users. Our results indicate that this new topic modeling pipeline can improve the extraction of themes from noisy online discussions, thereby contributing to deeper insights for healthcare research.
Suggested Citation
Yi Xin & Monika E Grabowska & Srushti Gangireddy & Matthew S Krantz & V Eric Kerchberger & Alyson L Dickson & Qiping Feng & Zhijun Yin & Wei-Qi Wei, 2025.
"Improving topic modeling performance on social media through semantic relationships within biomedical terminology,"
PLOS ONE, Public Library of Science, vol. 20(2), pages 1-16, February.
Handle:
RePEc:plo:pone00:0318702
DOI: 10.1371/journal.pone.0318702
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318702. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.