Author
Abstract
The benign and malignant discrimination of pulmonary nodules plays a very important role in diagnosing the extent of lung cancer lesions. There are many methods using Convolutional neural network (CNN) for benign and malignant classification of pulmonary nodules, but traditional CNN models focus more on the local features of pulmonary nodules and lack the extraction of global features of pulmonary nodules. To solve this problem, a Cross fusion attention ViT (Cross-ViT) network that fuses local features extracted by CNN and global features extracted by Transformer is proposed. The network first extracts different features independently through two branches and then performs feature fusion through the Cross fusion attention module. Cross-ViT can effectively capture and process both local and global information of lung nodules, which improves the accuracy of classifying the benign and malignant nature of pulmonary nodules. Experimental validation was performed on the LUNA16 dataset, and the accuracy, precision, recall and F1 score reached 91.04%, 91.42%, 92.45% and 91.92%, respectively, and the accuracy, precision, recall and F1 score with SENet as CNN branch reached 92.43%, 94.27%, 91.68% and 92.96%, respectively. The results show that the accuracy, precision, recall and F1 score of the proposed method are 0.3%, 0.11%, 4.52% and 3.03% higher than those of the average optimal method, respectively, and the performance of Cross-ViT network for benign and malignant classification is better than most classification methods.
Suggested Citation
Qinfang Zhu & Liangyan Fei, 2025.
"Cross-ViT based benign and malignant classification of pulmonary nodules,"
PLOS ONE, Public Library of Science, vol. 20(2), pages 1-16, February.
Handle:
RePEc:plo:pone00:0318670
DOI: 10.1371/journal.pone.0318670
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318670. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.