IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0318621.html
   My bibliography  Save this article

Interval combined prediction of mine tunnel’s air volume considering multiple influencing factors

Author

Listed:
  • Zhen Wang
  • Erkan Topal
  • Liangshan Shao
  • Chen Yang

Abstract

Continuous monitoring and accurate measurement of required air volume in mine tunnels are crucial phenomena for mine safety However, air volume fluctuates and can become unstable which can lead to biased measurement in underground environment. In this paper, to accurately measure the mine tunnel air volume, the tunnel air volume, and related ventilation parameters are consistently monitored, and the real monitoring data is converted to interval numbers for representation. These interval numbers are then preprocessed using an Interval-type Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(In-CEEMDAN) to extract the essential features of the data. Then, the monitored data is processed using the phase space reconstruction technique to identify the most relevant influencing factors related to the air volume. The tunnel air volume and influencing factors are then input into different neural networks for air volume prediction. To further improve prediction accuracy, the predicted values of wind volume intervals from the single prediction method are transformed into triangular fuzzy numbers, and the generalized induced ordered weighted average operator is introduced for the combination of prediction results. The grey correlation method is selected as the optimization criterion, and the preference coefficients are used to transform the multi-objective optimization problem into a single-objective optimization problem. In order to reduce the prediction error, the L2 paradigm is combined with the gray correlation to construct a complete interval combination type air volume prediction model which considers multiple influencing factors. Finally, a sensitivity analysis was carried out to analyze the values of the preference coefficients in the model, and the final range of values was given. Experimental analysis using data from a coal mine in Inner Mongolia showed that the method could reduce Combined Weighted Mean Absolute Error(CWMAE) to a maximum of 5.0384, Combined Weighted Root of Mean Squares Error(CWRMSE) to 6.8889, and Combined Weighted Mean Absolute Percentage Error(CWMAPE) to 1.4756, which indicates that the method proposed in this study can effectively improve the prediction accuracy of the mine tunnel air volume.

Suggested Citation

  • Zhen Wang & Erkan Topal & Liangshan Shao & Chen Yang, 2025. "Interval combined prediction of mine tunnel’s air volume considering multiple influencing factors," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-29, February.
  • Handle: RePEc:plo:pone00:0318621
    DOI: 10.1371/journal.pone.0318621
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318621
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0318621&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0318621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.