Author
Listed:
- Lefei Yu
- Pan Yu
- Yongchang Cao
- Weiya Cao
Abstract
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified. In the protein-protein interaction (PPI) network, the top 10 hub targets with the highest node connection values were TNF, IL-6, AKT1, EGFR, HIF1A, PPARG, CASP3, SRC, MMP9 and HSP90AA1. GO functional and KEGG pathway enrichment analysis involved 335 biological processes, 39 cellular components, 78 molecular functions, and 139 signaling pathways. The bioinformatics analysis indicated that TNF, IL-6, PPARG and MMP9 were promising candidate genes that can serve as diagnostic and prognostic biomarkers for liver fibrosis. Moreover, the molecular docking and molecular dynamic simulation of 50 ns well complemented the binding affinity and strong stability between the three common compounds MOL000098 (quercetin), MOL000354 (isorhamnetin) and MOL000422 (kaempferol) and four final hub targets (TNF, IL-6, PPARG and MMP9). Calculation of binding free energy and decomposition free energy using MM_PBSA and MM_GBSA also validated the strong binding affinity and stability of 12 systems. MOL000098 (quercetin) was selected via MTT assay and western blot assay verified MOL000098 (quercetin) treatments remarkably decreased the protein levels of TNF and IL-6 in TGFβ stimulated LX2 cells. In conclusion, RB-HMM drug pairs can affect the progression of liver fibrosis through multiple components, multiple targets and multiple pathways, and treat liver fibrosis possibly through anti-inflammatory and affecting cell apoptosis.
Suggested Citation
Lefei Yu & Pan Yu & Yongchang Cao & Weiya Cao, 2025.
"Mechanism of Radix Bupleuri and Hedysarum Multijugum Maxim drug pairs on liver fibrosis based on network pharmacology, bioinformatics and molecular dynamics simulation,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-22, January.
Handle:
RePEc:plo:pone00:0318336
DOI: 10.1371/journal.pone.0318336
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318336. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.