Author
Abstract
Vertical Take-Off and Landing (VTOL) aircraft excel in their ability to maneuver in limited spaces, making them ideal for a variety of uses including urban air mobility, emergency response, and disaster surveillance. Their agility and quick deployment features are especially valuable for executing complex missions in challenging environments. This paper addresses this issue by proposing a dual-loop sliding mode control (SMC) strategy optimized for VTOL models. However, tracking errors in the inner loop can impact the performance of the outer loop, complicating the assessment of the inner loop’s convergence speed to meet the outer loop’s criteria, and thus hindering the achievement of absolute stability in both control loops. To tackle this issue, the paper leverages the global asymptotic stability theorem for dynamic systems and develops a closed-loop system with global Lipschitz continuity, guaranteeing robust stability across both loops. This method not only bolsters the system’s dependability but also enhances its flexibility to operate effectively under complex dynamic conditions, thereby increasing the overall resilience and performance of the VTOL control systems. The implementation of the sliding mode control strategy in VTOL models significantly enhances operational stability and reduces tracking errors in complex environments. Numerical simulations demonstrate that our approach reliably improves both performance and adaptability of the system under varying dynamic conditions.
Suggested Citation
Liang Du, 2025.
"Trajectory tracking sliding mode control for vertical take-off and landing aircraft based on double loop and global Lipschitz stability,"
PLOS ONE, Public Library of Science, vol. 20(2), pages 1-20, February.
Handle:
RePEc:plo:pone00:0318294
DOI: 10.1371/journal.pone.0318294
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.