IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0317519.html
   My bibliography  Save this article

AI-driven educational transformation in ICT: Improving adaptability, sentiment, and academic performance with advanced machine learning

Author

Listed:
  • Azhar Imran
  • Jianqiang Li
  • Ahmad Alshammari

Abstract

This study significantly contributes to the sphere of educational technology by deploying state-of-the-art machine learning and deep learning strategies for meaningful changes in education. The hybrid stacking approach did an excellent implementation using Decision Trees, Random Forest, and XGBoost as base learners with Gradient Boosting as a meta-learner, which managed to record an accuracy of 90%. That indeed puts into great perspective the huge potential it possesses for accuracy measures while predicting in educational setups. The CNN model, which predicted with an accuracy of 89%, showed quite impressive capability in sentiment analysis to acquire further insight into the emotional status of the students. RCNN, Random Forests, and Decision Trees contribute to the possibility of educational data complexity with valuable insight into the complex interrelationships within ML models and educational contexts. The application of the bagging XGBoost algorithm, which attained a high accuracy of 88%, further stamps its utility toward enhancement of academic performance through strong robust techniques of model aggregation. The dataset that was used in this study was sourced from Kaggle, with 1205 entries of 14 attributes concerning adaptability, sentiment, and academic performance; the reliability and richness of the analytical basis are high. The dataset allows rigorous modeling and validation to be done to ensure the findings are considered robust. This study has several implications for education and develops on the key dimensions: teacher effectiveness, educational leadership, and well-being of the students. From the obtained information about student adaptability and sentiment, the developed system helps educators to make modifications in instructional strategy more efficiently for a particular student to enhance effectiveness in teaching. All these aspects could provide critical insights for the educational leadership to devise data-driven strategies that would enhance the overall school-wide academic performance, as well as create a caring learning atmosphere. The integration of sentiment analysis within the structure of education brings an inclusive, responsive attitude toward ensuring students’ well-being and, thus, a caring educational environment. The study is closely aligned with sustainable ICT in education objectives and offers a transformative approach to integrating AI-driven insights with practice in this field. By integrating notorious ML and DL methodologies with educational challenges, the research puts the basis for future innovations and technology in this area. Ultimately, it contributes to sustainable improvement in the educational system.

Suggested Citation

  • Azhar Imran & Jianqiang Li & Ahmad Alshammari, 2025. "AI-driven educational transformation in ICT: Improving adaptability, sentiment, and academic performance with advanced machine learning," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-31, May.
  • Handle: RePEc:plo:pone00:0317519
    DOI: 10.1371/journal.pone.0317519
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317519
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317519&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0317519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.