IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0317146.html
   My bibliography  Save this article

Predicted distribution of curl-leaf mountain mahogany (Cercocarpus ledifolius) in the Bighorn Canyon National Recreation Area

Author

Listed:
  • Robert E Kissell Jr.
  • Michael T Tercek
  • David P Thoma
  • Kristin L Legg

Abstract

Distributions of plants are expected to change in response to climate change, but the relative probability of that change is often unknown. Curl-leaf mountain mahogany (Cercocarpus ledifolius), an important browse species used by ungulates as forage and cover across the western US, is thought to be moderately to highly vulnerable to climate change this century, and a reduction in curl-leaf mountain mahogany occurrence may negatively impact ungulates reliant upon it. A combination of probability density estimation and vector analysis was used to predict curl-leaf mountain mahogany distribution across the species range relative to climate space and how that relationship would affect curl-leaf mountain mahogany at a local scale. Locally, we used the curl-leaf mountain mahogany population at the Bighorn Canyon National Recreation Area (BICA) in Montana and Wyoming for comparison. We modeled the probability of curl-leaf mountain mahogany occurrence across its distribution using water balance data to spatially and temporally assess the vulnerability of a population at a local scale. Modeled probabilities of occurrence and vector analysis indicated the species to remain in some areas within BICA but will be vulnerable in others given the predicted changes in temperature and precipitation in BICA if historical trajectories continue. This information allows managers to direct limited resources to other management actions by using the best available science to inform decisions. Other curl-leaf mountain mahogany populations currently inhabiting wetter, drier sites may follow a similar trajectory as the effects of climate change manifest. The approach used serves as a model to assess the predicted trend for species-specific plant communities of concern that may be adversely affected by climate change.

Suggested Citation

  • Robert E Kissell Jr. & Michael T Tercek & David P Thoma & Kristin L Legg, 2025. "Predicted distribution of curl-leaf mountain mahogany (Cercocarpus ledifolius) in the Bighorn Canyon National Recreation Area," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-15, February.
  • Handle: RePEc:plo:pone00:0317146
    DOI: 10.1371/journal.pone.0317146
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317146
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317146&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0317146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    2. Scott R Loarie & Benjamin E Carter & Katharine Hayhoe & Sean McMahon & Richard Moe & Charles A Knight & David D Ackerly, 2008. "Climate Change and the Future of California's Endemic Flora," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-10, June.
    3. repec:plo:pone00:0069917 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    4. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    5. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    6. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    7. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    8. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    9. Barham A. HamadAmin & Nabaz R. Khwarahm, 2023. "Mapping Impacts of Climate Change on the Distributions of Two Endemic Tree Species under Socioeconomic Pathway Scenarios (SSP)," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    10. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    11. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    12. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    13. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    14. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    15. Catherine C. Ivanovich & Tianyi Sun & Doria R. Gordon & Ilissa B. Ocko, 2023. "Future warming from global food consumption," Nature Climate Change, Nature, vol. 13(3), pages 297-302, March.
    16. Erik O. Sterner & Tom Adawi & U. Martin Persson & Ulrika Lundqvist, 2019. "Knowing how and knowing when: unpacking public understanding of atmospheric CO2 accumulation," Climatic Change, Springer, vol. 154(1), pages 49-67, May.
    17. Matthew A. Thomas & Ting Lin, 2018. "A dual model for emulation of thermosteric and dynamic sea-level change," Climatic Change, Springer, vol. 148(1), pages 311-324, May.
    18. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    20. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.