Author
Listed:
- Qihai Liu
- Kevin H Lee
- Hyun Bin Kang
Abstract
Graphical models have been widely used to explicitly capture the statistical relationships among the variables of interest in the form of a graph. The central question in these models is to infer significant conditional dependencies or independencies from high-dimensional data. In the current literature, it is common to assume that the high-dimensional data come from a homogeneous source and follow a parametric graphical model. However, in real-world context the observed data often come from different sources and may have heterogeneous dependencies across the whole population. In addition, for time-dependent data, many work has been done to estimate discrete correlation structures at each time point but less work has been done to estimate global correlation structures over all time points. In this work, we propose finite mixtures of functional graphical models (MFGM), which detect the heterogeneous subgroups of the population and estimate single graph for each subgroup by considering the correlation structures. We further design an estimation method for MFGM using an iterative Expectation-Maximization (EM) algorithm and functional graphical lasso (fglasso). Numerically, we demonstrate the performance of our method in simulation studies and apply our method to high-dimensional electroencephalogram (EEG) dataset taken from an alcoholism study.
Suggested Citation
Qihai Liu & Kevin H Lee & Hyun Bin Kang, 2025.
"Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-15, January.
Handle:
RePEc:plo:pone00:0316458
DOI: 10.1371/journal.pone.0316458
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0316458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.