Author
Listed:
- Muhammad Tahir
- Bu Yude
- Tahir Mehmood
- Saima Bashir
- Zeeshan Ashraf
Abstract
In data-based modeling, correlations between explanatory variables often lead to the formation of distinct gene blocks. This study focuses on identifying influential gene blocks and key variables within these blocks, with a particular application in mind: genotype-phenotype mapping in Saccharomyces. To overcome the challenges of a limited sample size, we use partial least squares (PLS). These gene blocks, which consist of combinations of genes, play a critical role in explaining phenotypic variations. Using partial least squares with multiple blocks, we propose a novel approach, weighted block importance on projection in partial least squares (BwIP-mbPLS), to identify influential gene blocks. Variable importance on projection is used to select significant genes within these blocks. Our study models copper chloride at 0.375mM and melibiose at 2% efficiency and rate in Saccharomyces cerevisiae yeast. Analysis based on silhouette index and total distance within clusters using k-means shows the classification of 5629 genes into 18 gene blocks. Remarkably, BwIP-mbPLS identifies 4 gene blocks on average and significantly improves the prediction of efficiency-based phenotypes. In contrast, traditional block importance in partial least squares projection identifies 6 gene blocks on average and shows comparable or better performance than BIP-mbPLS for rate-based phenotypes. Remarkably, most gene blocks contain fewer than 10 influential genes. Both proposed variants consistently outperform conventional approaches such as partial least squares and multi-block partial least squares in predicting phenotypes. These results highlight the potential of our methods for advancing data-based modeling and genotype-phenotype mapping.
Suggested Citation
Muhammad Tahir & Bu Yude & Tahir Mehmood & Saima Bashir & Zeeshan Ashraf, 2025.
"Block selection in multiblock partial least squares for modeling genotype-phenotype relations in Saccharomyces,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-16, January.
Handle:
RePEc:plo:pone00:0316350
DOI: 10.1371/journal.pone.0316350
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0316350. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.