Author
Listed:
- Linshan Zhou
- Mu Yang
- Jiadi Luo
- Hongjing Zang
- Songqing Fan
- Yuting Zhan
Abstract
Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology. Methods: Whole-slide images (WSIs) were meticulously collected and annotated by experienced pathologists. A model was intricately designed and rigorously tested to yield the quantitative data regarding staining intensity and extent. The collective output data was subjected multiplicative analysis, exploring its correlation with the prognosis. Results: The G3BP1 molecular marker scoring model was successfully established utilizing deep learning methodologies, with a calculated threshold staining scores of 1.5. Notably, patients with NPC exhibiting higher expression levels of G3BP1 proteins displayed significantly lower for overall survival rates (OS). Multivariate analysis further validated that positive expression of G3BP1 stood as an independent poorer prognostic factors, indicating a poorer prognosis for NPC patients. Conclusion: Computational pathology emerges as a transformative tool capable of substantially reducing the burden on pathologists while concurrently enhancing and diagnostic sensitivity and specificity. The positive expression of G3BP1 protein serves as valuable, independent biomarker, offering predictive insights into a poor prognosis for patients with NPC.
Suggested Citation
Linshan Zhou & Mu Yang & Jiadi Luo & Hongjing Zang & Songqing Fan & Yuting Zhan, 2025.
"Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-13, January.
Handle:
RePEc:plo:pone00:0315893
DOI: 10.1371/journal.pone.0315893
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.