IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315893.html
   My bibliography  Save this article

Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma

Author

Listed:
  • Linshan Zhou
  • Mu Yang
  • Jiadi Luo
  • Hongjing Zang
  • Songqing Fan
  • Yuting Zhan

Abstract

Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology. Methods: Whole-slide images (WSIs) were meticulously collected and annotated by experienced pathologists. A model was intricately designed and rigorously tested to yield the quantitative data regarding staining intensity and extent. The collective output data was subjected multiplicative analysis, exploring its correlation with the prognosis. Results: The G3BP1 molecular marker scoring model was successfully established utilizing deep learning methodologies, with a calculated threshold staining scores of 1.5. Notably, patients with NPC exhibiting higher expression levels of G3BP1 proteins displayed significantly lower for overall survival rates (OS). Multivariate analysis further validated that positive expression of G3BP1 stood as an independent poorer prognostic factors, indicating a poorer prognosis for NPC patients. Conclusion: Computational pathology emerges as a transformative tool capable of substantially reducing the burden on pathologists while concurrently enhancing and diagnostic sensitivity and specificity. The positive expression of G3BP1 protein serves as valuable, independent biomarker, offering predictive insights into a poor prognosis for patients with NPC.

Suggested Citation

  • Linshan Zhou & Mu Yang & Jiadi Luo & Hongjing Zang & Songqing Fan & Yuting Zhan, 2025. "Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0315893
    DOI: 10.1371/journal.pone.0315893
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315893
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315893&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gil Shamai & Amir Livne & António Polónia & Edmond Sabo & Alexandra Cretu & Gil Bar-Sela & Ron Kimmel, 2022. "Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darui Jin & Shangying Liang & Artem Shmatko & Alexander Arnold & David Horst & Thomas G. P. Grünewald & Moritz Gerstung & Xiangzhi Bai, 2024. "Teacher-student collaborated multiple instance learning for pan-cancer PDL1 expression prediction from histopathology slides," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Peng Zhang & Chaofei Gao & Zhuoyu Zhang & Zhiyuan Yuan & Qian Zhang & Ping Zhang & Shiyu Du & Weixun Zhou & Yan Li & Shao Li, 2025. "Systematic inference of super-resolution cell spatial profiles from histology images," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    3. Kévin Cortacero & Brienne McKenzie & Sabina Müller & Roxana Khazen & Fanny Lafouresse & Gaëlle Corsaut & Nathalie Acker & François-Xavier Frenois & Laurence Lamant & Nicolas Meyer & Béatrice Vergier &, 2023. "Evolutionary design of explainable algorithms for biomedical image segmentation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.