IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315654.html
   My bibliography  Save this article

Symbolic and non-symbolic numbers differently affect center identification in a number-line bisection task

Author

Listed:
  • Annamaria Porru
  • Lucia Ronconi
  • Daniela Lucangeli
  • Lucia Regolin
  • Silvia Benavides-Varela
  • Rosa Rugani

Abstract

Numerical and spatial representations are intertwined as in the Mental Number Line, where smaller numbers are on the left and larger numbers on the right. This relationship has been repeatedly demonstrated with various experimental approaches, such as the line bisection task. Spatial accuracy appears to be systematically distorted leftward for smaller digits by elaboration of spatial codes during number processing. Other studies have investigated perceptual and visuo-spatial attention bias using the digit line bisection task, suggesting that these effects may be related to a cognitive illusion in which the reference numbers project their values onto the straight line, creating an illusory lateral disparity. On the other hand, both dot arrays (non-symbolic stimuli) and arabic numbers (symbolic stimuli) demonstrate a privileged relation between spatial and numerical elaboration. The bias toward the larger numerosity flanker was attributed to a length illusion. There is, however, no consensus regarding whether physical features and symbolic and non-symbolic numerical representations exert the same influence over spatial ones. In the present study, we carried out a series of 4 Experiments to provide further evidence for a better understanding of the nature of this differential influence. All experiments presented the numbers in both symbolic and non-symbolic formats. In Experiment 1, the numbers “2-8” were presented in a variety of left-right orientations. In Experiment 2, the flankers were identical, “2-2” or “8-8”, and symmetrically displaced with respect to the line. In Experiment 3, we employed asymmetrically distributed eight dots, or font sizes in “8-8” numerals, to create a perceptual imbalance. In Experiment 4, we replicated the manipulation used in Experiment 3, but with two dots and “2-2” numerals. The Non-Symbolic format induced stronger leftward biases, particularly when the larger numerosity (Experiment 1) or the denser stimuli near the line (Experiments 3 and 4) were on the left, while no bias emerged when flankers were numerically equivalent and symmetrical (Experiment 2). The left bias may result from a tendency to estimate the influence of stimulus perception associated with participants’ scanning direction, similar to the direction of pseudoneglect. Conversely, the Symbolic format induced mostly right bias, possibly due to left-lateralized processing and a tendency to use a common strategy involving scanning from left to right. Altogether our data support the view that abstract numbers and non-symbolic magnitude affect perceptual and attentional biases, yet in distinctive ways.

Suggested Citation

  • Annamaria Porru & Lucia Ronconi & Daniela Lucangeli & Lucia Regolin & Silvia Benavides-Varela & Rosa Rugani, 2025. "Symbolic and non-symbolic numbers differently affect center identification in a number-line bisection task," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-14, May.
  • Handle: RePEc:plo:pone00:0315654
    DOI: 10.1371/journal.pone.0315654
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315654
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315654&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.