Author
Listed:
- Min-xiao Wang
- Chang-sheng Liao
- Xue-qin Wei
- Yu-qin Xie
- Peng-fei Han
- Yan-hui Yu
Abstract
Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS. Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set. To ensure data consistency and comparability, we standardized the training sets and removed batch effects using the ComBat algorithm, thereby integrating them into a unified gene expression dataset. Subsequently, we conducted differential expression analysis to identify genes with significant changes in expression levels across different disease states. In order to enhance prediction accuracy, we incorporated six common predictive models and trained them based on the filtered differential gene expression dataset. After comprehensive evaluation, we ultimately selected three algorithms—Lasso regression, random forest, and support vector machine (SVM)—as our core predictive models. To more precisely pinpoint genes closely related to disease characteristics, we utilized the aforementioned three machine learning methods for prediction and took the intersection of these prediction results, yielding a more robust list of genes associated with disease features. Following this, we conducted in-depth analysis of these key genes in the training set and validated the results independently using the GSE19429 dataset. Furthermore, we performed differential analysis of gene groups, co-expression analysis, and enrichment analysis to delve deeper into the mechanisms underlying the roles of these genes in disease initiation and progression. Through these analyses, we aim to provide new insights and foundations for disease diagnosis and treatment. Figure illustrates the data preprocessing and analysis workflow of this study. Results: Our analysis of differentially expressed genes (DEGs) in CD34+ hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) revealed significant differences in gene expression patterns compared to the control group (individuals without MDS). Specifically, the expression levels of two key genes, IRF4 and ELANE, were notably downregulated in CD34+ HSCs of MDS patients, indicating their downregulatory roles in the pathological process of MDS Conclusion: This study sheds light on the potential molecular mechanisms underlying MDS, with a particular focus on the pivotal roles of IRF4 and ELANE as key pathogenic genes. Our findings provide a novel perspective for understanding the complexity of MDS and exploring therapeutic strategies. They may also guide the development of precise and effective treatments, such as targeted interventions directed against these genes
Suggested Citation
Min-xiao Wang & Chang-sheng Liao & Xue-qin Wei & Yu-qin Xie & Peng-fei Han & Yan-hui Yu, 2025.
"Research and analysis of differential gene expression in CD34 hematopoietic stem cells in myelodysplastic syndromes,"
PLOS ONE, Public Library of Science, vol. 20(3), pages 1-27, March.
Handle:
RePEc:plo:pone00:0315408
DOI: 10.1371/journal.pone.0315408
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315408. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.