IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315370.html
   My bibliography  Save this article

Genotype x environment interaction in cassava multi-environment trials via analytic factor

Author

Listed:
  • Juraci Souza Sampaio Filho
  • Isadora Cristina Martins Oliveira
  • Maria Marta Pastina
  • Marcos de Souza Campos
  • Eder Jorge de Oliveira

Abstract

The variability in genetic variance and covariance due to genotype × environment interaction (G×E) can hinder genotype selection accuracy, especially for complex traits. This study analyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict agronomic performance in untested environments using factor analytic multiplicative mixed models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava genotypes for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content (DMC) across 55 Brazilian environments. FAMM was applied to estimate genetic values and environmental loads, revealing significant genetic variance, especially for FRY (0.16–0.92) and broad-sense heritability (H^²) above 0.70 in advanced yield trials. In joint analyses, analytic factor FA4 explained over 88% of genetic variation for all traits despite high G×E and data imbalance. Positive genetic correlations were found between environments for ShY and DRY (0.99 and 1.0, respectively), while FRY and DMC showed negative correlations (-0.82 and -0.95). Latent regression analysis identified hybrids adaptable to a range of environments, as well as genotypes suited to specific conditions. Moderate correlations between environmental covariables (rainfall, altitude, solar radiation) and FA model loadings suggest these factors contribute to high G×E interactions, notably for FRY. The FAMM model provided a robust approach to G×E analysis in cassava, yielding practical insights for breeding programs.

Suggested Citation

  • Juraci Souza Sampaio Filho & Isadora Cristina Martins Oliveira & Maria Marta Pastina & Marcos de Souza Campos & Eder Jorge de Oliveira, 2024. "Genotype x environment interaction in cassava multi-environment trials via analytic factor," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-37, December.
  • Handle: RePEc:plo:pone00:0315370
    DOI: 10.1371/journal.pone.0315370
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315370
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315370&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin Thompson & Brian Cullis & Alison Smith & Arthur Gilmour, 2003. "A Sparse Implementation of the Average Information Algorithm for Factor Analytic and Reduced Rank Variance Models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 45(4), pages 445-459, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alison B. Smith & Lauren M. Borg & Beverley J. Gogel & Brian R. Cullis, 2019. "Estimation of Factor Analytic Mixed Models for the Analysis of Multi-treatment Multi-environment Trial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 573-588, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.