Author
Listed:
- Qian Shen
- Yi Li
- YuXiang Zhang
- Lei Zhang
- ShiHao Liu
- Jinhua Wu
Abstract
In order to improve the real-time and feasibility of traffic sign detection for autonomous driving in complex traffic environments, this paper proposes a small target detection algorithm for traffic signs based on the YOLOv8 model. First, the bottleneck of the C2f module in the original yolov8 network is replaced with the residual Faster-Block module in FasterNet, and then the new channel mixer convolution GLU (CGLU) in TransNeXt is combined with it to construct the C2f-faster-CGLU module, reducing the number of model parameters and computational load; Secondly, the SPPF module is combined with the large separable kernel attention (LSKA) to construct the SPPF-LSKA module, which greatly enhances the feature extraction ability of the model; Then, by adding a small target detection layer, the accuracy of small target detection such as traffic signs is greatly improved; Finally, the Inner-IoU and MPDIoU loss functions are integrated to construct WISE-Inner-MPDIoU, which replaces the original CIoU loss function, thereby improving the calculation accuracy. The model has been validated on two datasets Tsinghua-Tencent 100K (TT100K) and CSUST Chinese Traffic Sign Detection Benchmark 2021 (CCTSDB 2021), achieving Map50 of 89.8% and 98.9% respectively. The model achieves precision on par with existing mainstream algorithms, while being simpler, significantly reducing computational requirements, and being more suitable for small target detection tasks. The source code and test results of the models used in this study are available at https://github.com/lyzzzzyy/CSW-YOLO.git.
Suggested Citation
Qian Shen & Yi Li & YuXiang Zhang & Lei Zhang & ShiHao Liu & Jinhua Wu, 2025.
"CSW-YOLO: A traffic sign small target detection algorithm based on YOLOv8,"
PLOS ONE, Public Library of Science, vol. 20(3), pages 1-17, March.
Handle:
RePEc:plo:pone00:0315334
DOI: 10.1371/journal.pone.0315334
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315334. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.