Author
Listed:
- Jerry Jacob
- Nitish Patel
- Sucheta Sehgal
Abstract
Computational models of the cell can be used to study the impact of drugs and assess pathological risks. Typically, these models are computationally demanding or challenging to implement in dedicated hardware for real-time emulation. A new Frequency Modulation (FM) model is proposed to address these limitations. This model utilizes a single sine generator with constant amplitude, while phase and frequency are modulated to emulate an action potential (AP). The crucial element of this model is the identification of the modulating signal. Focusing on FPGA implementation, we have employed a piecewise linear polynomial with a fixed number of breakpoints to serve as the modulating signal. The adaptability of this signal permits the emulation of dynamic properties and the coupling of cells. Additionally, we have introduced a state controller that handles both of these requirements. The building blocks of the FM model have direct integer equivalents, making them suitable for implementation on digital platforms like Field Programmable Gate Arrays (FPGA). We have demonstrated wavefront propagation in 1-D and 2-D models of tissue. We have used various parameters to quantify the wavefront propagation in 2-D tissues and emulated specific cellular dysfunctions. The FM model can replicate any detailed cell model and emulate its corresponding tissue model. This model is at its preliminary stage. The FPGA implementation of this model is a work in progress. Overall, the results demonstrate that the FM model has the potential for real-time cell and tissue emulation on an FPGA.
Suggested Citation
Jerry Jacob & Nitish Patel & Sucheta Sehgal, 2024.
"Cell modeling using frequency modulation,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-40, December.
Handle:
RePEc:plo:pone00:0315003
DOI: 10.1371/journal.pone.0315003
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.