Author
Listed:
- Shan Jiang
- Zhaoqian Su
- Nathaniel Bloodworth
- Yunchao Liu
- Cristina E Martina
- David G Harrison
- Jens Meiler
Abstract
Class Ι major histocompatibility complexes (MHC-Ι), encoded by the highly polymorphic HLA-A, HLA-B, and HLA-C genes in humans, are expressed on all nucleated cells. Both self and foreign proteins are processed to peptides of 8–10 amino acids, loaded into MHC-Ι, within the endoplasmic reticulum and then presented on the cell surface. Foreign peptides presented in this fashion activate CD8 + T cells and their immunogenicity correlates with their affinity for the MHC-Ι binding groove. Thus, predicting antigen binding affinity for MHC-Ι is a valuable tool for identifying potentially immunogenic antigens. While quite a few predictors for MHC-Ι binding exist, there are no currently available tools that can predict antigen/MHC-Ι binding affinity for antigens with explicitly labeled post-translational modifications or unusual/non-canonical amino acids (NCAAs). However, such modifications are increasingly recognized as critical mediators of peptide immunogenicity. In this work, we propose a machine learning application that quantifies the binding affinity of epitopes containing NCAAs to MHC-Ι and compares its performance with other commonly used regressors. Our model demonstrates robust performance, with 5-fold cross-validation yielding an R2 value of 0.477 and a root-mean-square error (RMSE) of 0.735, indicating strong predictive capability for peptides with NCAAs. This work provides a valuable tool for the computational design and optimization of peptides incorporating NCAAs, potentially accelerating the development of novel peptide-based therapeutics with enhanced properties and efficacy.
Suggested Citation
Shan Jiang & Zhaoqian Su & Nathaniel Bloodworth & Yunchao Liu & Cristina E Martina & David G Harrison & Jens Meiler, 2025.
"Machine learning application to predict binding affinity between peptide containing non-canonical amino acids and HLA-A0201,"
PLOS ONE, Public Library of Science, vol. 20(6), pages 1-11, June.
Handle:
RePEc:plo:pone00:0314833
DOI: 10.1371/journal.pone.0314833
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314833. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.