Author
Listed:
- Katherine Du
- Stavan Shah
- Sandeep Chandra Bollepalli
- Mohammed Nasar Ibrahim
- Adarsh Gadari
- Shan Sutharahan
- José-Alain Sahel
- Jay Chhablani
- Kiran Kumar Vupparaboina
Abstract
Objectives: Various imaging features on optical coherence tomography (OCT) are crucial for identifying and defining disease progression. Establishing a consensus on these imaging features is essential, particularly for training deep learning models for disease classification. This study aims to analyze the inter-rater reliability in labeling the quality and common imaging signatures of retinal OCT scans. Methods: 500 OCT scans obtained from CIRRUS HD-OCT 5000 devices were displayed at 512x1024x128 resolution on a customizable, in-house annotation software. Each patient’s eye was represented by 16 random scans. Two masked reviewers independently labeled the quality and specific pathological features of each scan. Evaluated features included overall image quality, presence of fovea, and disease signatures including subretinal fluid (SRF), intraretinal fluid (IRF), drusen, pigment epithelial detachment (PED), and hyperreflective material. The raw percentage agreement and Cohen’s kappa (κ) coefficient were used to evaluate concurrence between the two sets of labels. Results: Our analysis revealed κ = 0.60 for the inter-rater reliability of overall scan quality, indicating substantial agreement. In contrast, there was slight agreement in determining the cause of poor image quality (κ = 0.18). The binary determination of presence and absence of retinal disease signatures showed almost complete agreement between reviewers (κ = 0.85). Specific retinal pathologies, such as the foveal location of the scan (0.78), IRF (0.63), drusen (0.73), and PED (0.87), exhibited substantial concordance. However, less agreement was found in identifying SRF (0.52), hyperreflective dots (0.41), and hyperreflective foci (0.33). Conclusions: Our study demonstrates significant inter-rater reliability in labeling the quality and retinal pathologies on OCT scans. While some features show stronger agreement than others, these standardized labels can be utilized to create automated machine learning tools for diagnosing retinal diseases and capturing valuable pathological features in each scan. This standardization will aid in the consistency of medical diagnoses and enhance the accessibility of OCT diagnostic tools.
Suggested Citation
Katherine Du & Stavan Shah & Sandeep Chandra Bollepalli & Mohammed Nasar Ibrahim & Adarsh Gadari & Shan Sutharahan & José-Alain Sahel & Jay Chhablani & Kiran Kumar Vupparaboina, 2024.
"Inter-rater reliability in labeling quality and pathological features of retinal OCT scans: A customized annotation software approach,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-15, December.
Handle:
RePEc:plo:pone00:0314707
DOI: 10.1371/journal.pone.0314707
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314707. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.