Author
Listed:
- Himanshi Babbar
- Shalli Rani
- Maha Driss
Abstract
Vehicular Networks (VN) utilizing Software Defined Networking (SDN) have garnered significant attention recently, paralleling the advancements in wireless networks. VN are deployed to optimize traffic flow, enhance the driving experience, and ensure road safety. However, VN are vulnerable to Distributed Denial of Service (DDoS) attacks, posing severe threats in the contemporary Internet landscape. With the surge in Internet traffic, this study proposes novel methodologies for effectively detecting DDoS attacks within Software-Defined Vehicular Networks (SDVN), wherein attackers commandeer compromised nodes to monopolize network resources, disrupting communication among vehicles and between vehicles and infrastructure. The proposed methodology aims to: (i) analyze statistical flow and compute entropy, and (ii) implement Machine Learning (ML) algorithms within SDN Intrusion Detection Systems for Internet of Things (IoT) environments. Additionally, the approach distinguishes between reconnaissance, Denial of Service (DoS), and DDoS traffic by addressing the challenges of imbalanced and overfitting dataset traces. One of the significant challenges in this integration is managing the computational load and ensuring real-time performance. The ML models, especially complex ones like Random Forest, require substantial processing power, which necessitates efficient data handling and possibly leveraging edge computing resources to reduce latency. Ensuring scalability and maintaining high detection accuracy as network traffic grows and evolves is another critical challenge. By leveraging a minimal subset of features from a given dataset, a comparative study is conducted to determine the optimal sample size for maximizing model accuracy. Further, the study evaluates the impact of various dataset attributes on performance thresholds. The K-nearest Neighbor, Random Forest, and Logistic Regression supervised ML classifiers are assessed using the BoT-IoT dataset. The results indicate that the Random Forest classifier achieves superior performance metrics, with Precision, F1-score, Accuracy, and Recall rates of 92%, 92%, 91%, and 90%, respectively, over five iterations.
Suggested Citation
Himanshi Babbar & Shalli Rani & Maha Driss, 2024.
"Effective DDoS attack detection in software-defined vehicular networks using statistical flow analysis and machine learning,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-31, December.
Handle:
RePEc:plo:pone00:0314695
DOI: 10.1371/journal.pone.0314695
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314695. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.