Author
Listed:
- Xiaozhi Du
- Kai Chen
- Hongyuan Du
- Zongbin Qiao
Abstract
Large-scale many-objective optimization problems (LSMaOPs) are a current research hotspot. However, since LSMaOPs involves a large number of variables and objectives, state-of-the-art methods face a huge search space, which is difficult to be explored comprehensively. This paper proposes an improved sparrow search algorithm (SSA) that manages convergence and diversity separately for solving LSMaOPs, called two-stage sparrow search algorithm (TS-SSA). In the first stage of TS-SSA, this paper proposes a many-objective sparrow search algorithm (MaOSSA) to mainly manages the convergence through the adaptive population dividing strategy and the random bootstrap search strategy. In the second stage of TS-SSA, this paper proposes a dynamic multi-population search strategy to mainly manage the diversity of the population through the dynamic population dividing strategy and the multi-population search strategy. TS-SSA has been experimentally compared with 10 state-of-the-art MOEAs on DTLZ and LSMOP benchmark test problems with 3-20 objectives and 300-2000 decision variables. The results show that TS-SSA has significant performance and efficiency advantages in solving LSMaOPs. In addition, we apply TS-SSA to a real case (automatic test scenarios generation), and the result shows that TS-SSA outperforms other algorithms on diversity.
Suggested Citation
Xiaozhi Du & Kai Chen & Hongyuan Du & Zongbin Qiao, 2025.
"TS-SSA: An improved two-stage sparrow search algorithm for large-scale many-objective optimization problems,"
PLOS ONE, Public Library of Science, vol. 20(3), pages 1-38, March.
Handle:
RePEc:plo:pone00:0314584
DOI: 10.1371/journal.pone.0314584
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314584. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.