IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314347.html
   My bibliography  Save this article

Scalable and energy-efficient task allocation in industry 4.0: Leveraging distributed auction and IBPSO

Author

Listed:
  • Qingwen Li
  • Tang Wai Fan
  • Lam Sui Kei
  • Zhaobin Li

Abstract

Industry 4.0 has transformed manufacturing with the integration of cutting-edge technology, posing crucial issues in the efficient task assignment to multi-tasking robots within smart factories. The paper outlines a unique method of decentralizing auctions to handle basic tasks. It also introduces an improved variant of the improved Binary Particle Swarm Optimization (IBPSO) algorithm to manage complicated tasks that require multi-robot collaboration. The main contributions we make are: the design of an auction decentralization algorithm (AOCTA) which allows for an efficient and flexible task distribution in dynamic contexts, the optimization of coalition formation in complex jobs by using IBPSO and improves the efficiency of energy and decreases the cost of computation as well as thorough simulations that show that our proposed method significantly surpasses conventional methods for efficiency, task completion rates in terms of energy usage, task completion rate, and scaling of the system. This research contributes to the development of smart manufacturing through providing an effective solution that aligns with the sustainability objectives and addresses operational efficiency as well as environmental impacts. Addressing the challenges posed by dynamic task allocation in distributed multi-robot systems, these advanced technologies provide a comprehensive solution, facilitating the evolution of innovative manufacturing systems.

Suggested Citation

  • Qingwen Li & Tang Wai Fan & Lam Sui Kei & Zhaobin Li, 2025. "Scalable and energy-efficient task allocation in industry 4.0: Leveraging distributed auction and IBPSO," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0314347
    DOI: 10.1371/journal.pone.0314347
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314347
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314347&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vasilios Patsias & Petros Amanatidis & Dimitris Karampatzakis & Thomas Lagkas & Kalliopi Michalakopoulou & Alexandros Nikitas, 2023. "Task Allocation Methods and Optimization Techniques in Edge Computing: A Systematic Review of the Literature," Future Internet, MDPI, vol. 15(8), pages 1-30, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuopeng Li & Hengshuai Ju & Zepeng Ren, 2023. "A Learning Game-Based Approach to Task-Dependent Edge Resource Allocation," Future Internet, MDPI, vol. 15(12), pages 1-21, December.
    2. Rafael Moreno-Vozmediano & Rubén S. Montero & Eduardo Huedo & Ignacio M. Llorente, 2024. "Intelligent Resource Orchestration for 5G Edge Infrastructures," Future Internet, MDPI, vol. 16(3), pages 1-31, March.
    3. Ali Pashazadeh & Giovanni Nardini & Giovanni Stea, 2023. "A Comprehensive Survey Exploring the Multifaceted Interplay between Mobile Edge Computing and Vehicular Networks," Future Internet, MDPI, vol. 15(12), pages 1-45, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.