Author
Listed:
- Timon Pahl
- Albrecht Radtke
- Joana F Büttner
- Thomas Mittlmeier
- Philipp Weißgraeber
Abstract
Introduction: Subtalar joint arthrodesis is primarily indicated for advanced osteoarthritis, hindfoot deformity, and/or instability. During the first 6-10 weeks after surgery, there is an intermediary structurally weaker state before complete bony fusion of the calcaneus and talus occurs. Loading of the foot can lead to mechanical stresses and relative movements in the former joint gap, which can impede the fusion process. The objective of this study was to examine the mechanical healing conditions for a subtalar arthrodesis with a calcaneal locking nail. Methods: A probabilistic finite element model of the subtalar joint with a calcaneal locking nail was created to represent the foot post-surgery that accounts for the uncertainty of the material properties. The model differentiates between cortical and cancellous bone and includes non-linear contact definitions in the subtalar joint. Multiple loading scenarios, including hindfoot inversion/eversion, were simulated to determine bone and implant stresses. Utilizing local articular coordinate systems, a displacement analysis was established to separate normal and tangential components and account for their separate effects. The loading of the locking nail was assessed through section moments. Results: Under inversion/eversion loading, the area near the locking screws and upper end of the nail experienced the highest stresses. The maximum stresses in cortical and cancellous bone were 112±8.3 MPa and 2.1±0.2 MPa, respectively. The comparison of the von Mises and maximum principal stresses for the bones showed a load case dependency with strong effect on tensile loading states. The proposed method for the analysis of relative displacement in the local articular coordinate systems showed joint regions exhibiting normal and tangential movements that changed with the considered loading states. It was found that tangential displacements of up to 0.19 mm are related to the torsional loading of the calcaneal locking nail, which is connected to the corresponding torsional stiffness of the implant and its fixation in the calcaneus and talus. Normal displacements in the joint gap of up to -0.18 mm can be shown to be governed by the bending moments acting on the calcaneal locking nail, which are linked to the nail’s bending stiffness. The ratio of tangential and normal displacement in the critical inversion configuration was determined to be -1.1. Conclusions: Inversion and eversion loads can lead to significant mechanical loading of the bones and to bending and torsional loading of the locking nail. The bending leads to normal displacements in the articular gap. Torsions can lead to significant tangential displacements that have been shown to promote non-union instead of bony fusion.
Suggested Citation
Timon Pahl & Albrecht Radtke & Joana F Büttner & Thomas Mittlmeier & Philipp Weißgraeber, 2024.
"Biomechanical conditions of subtalar joint arthrodesis with calcaneal locking nail: A probabilistic numerical study,"
PLOS ONE, Public Library of Science, vol. 19(11), pages 1-19, November.
Handle:
RePEc:plo:pone00:0314034
DOI: 10.1371/journal.pone.0314034
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.