Author
Listed:
- Prashant Kumar
- Chitra Kushwaha
- Dimple Sethi
- Debjani Ghosh
- Punit Gupta
- Ankit Vidyarthi
Abstract
In the current cybersecurity landscape, Distributed Denial of Service (DDoS) attacks have become a prevalent form of cybercrime. These attacks are relatively easy to execute but can cause significant disruption and damage to targeted systems and networks. Generally, attackers perform it to make reprisal but sometimes this issue can be authentic also. In this paper basically conversed about some deep learning models that will hand over a descent accuracy in prediction of DDoS attacks. This study evaluates various models, including Vanilla LSTM, Stacked LSTM, Deep Neural Networks (DNN), and other machine learning models such as Random Forest, AdaBoost, and Gaussian Naive Bayes to determine the DDoS attack along with comparing these approaches as well as perceiving which one is about to give elegant outcomes in prediction. The rationale for selecting Long Short-Term Memory (LSTM) networks for evaluation in our study is based on their proven effectiveness in modeling sequential and time-series data, which are inherent characteristics of network traffic and cybersecurity data. Here, a benchmark dataset named CICDDoS2019 is used that contains 88 features from which a handful (22) convenient features are extracted further deep learning models are applied. The result that is acquired here is significantly better than available techniques those are attainable in this context by using Machine Learning models, data mining techniques and some IOT based approaches. It’s not possible to completely avoid your server from these threats but by applying discussed techniques in the present juncture, these attacks can be prevented to an extent and it will also help to server to fulfil the genuine requests instead of sticking in the accomplishing the requests created by the unauthentic user.
Suggested Citation
Prashant Kumar & Chitra Kushwaha & Dimple Sethi & Debjani Ghosh & Punit Gupta & Ankit Vidyarthi, 2025.
"Investigating the performance of multivariate LSTM models to predict the occurrence of Distributed Denial of Service (DDoS) attack,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-17, January.
Handle:
RePEc:plo:pone00:0313930
DOI: 10.1371/journal.pone.0313930
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.