Author
Listed:
- Achim Langenbucher
- Nóra Szentmáry
- Alan Cayless
- Peter Hoffmann
- Jascha Wendelstein
- Seth Pantanelli
Abstract
Purpose: To investigate different measures for corneal astigmatism in the context of reconstructed corneal astigmatism (recCP) as required to correct the pseudophakic eye, and to derive prediction models to map measured corneal astigmatism to recCP. Methods: Retrospective single centre study of 509 eyes of 509 cataract patients with monofocal (MX60P) IOL. Corneal power measured with the IOLMaster 700 keratometry (IOLMK), and Galilei G4 keratometry (GK), total corneal power (TCP2), and Alpin’s integrated front (CorT) and total corneal power (CorTTP). Feedforward shallow neural network (NET) and linear regression (REG) prediction models were derived to map the measured C0 and C45 power vector components to the respective recCP components. Results: Both the NET and REG models showed superior performance compared to a constant model correcting the centroid error. The mean squared prediction errors for the NET/REG models were: 0.21/0.33 dpt for IOLMK, 0.23/0.36 dpt for GK, 0.24/0.35 for TCP2, 0.23/0.39 dpt for CorT and 0.22/0.36 dpt for CorTTP respectively (training data) and 0.27/0.37 dpt for IOLMK, 0.26/0.37 dpt for GK, 0.38/0.42 dpt for TCP2, 0.35/0.36 dpt for CorT, and 0.44/0.45 dpt for CorTTP respectively on the test data. Crossvalidation with model optimisation on the training (and validation) data and performance check on the test data showed a slight overfitting especially with the NET models. Conclusions: Measurement modalities for corneal astigmatism do not yield consistent results. On training data the NET models performed systematically better, but on the test data REG showed similar performance to NET with the advantage of easier implementation.
Suggested Citation
Achim Langenbucher & Nóra Szentmáry & Alan Cayless & Peter Hoffmann & Jascha Wendelstein & Seth Pantanelli, 2025.
"Evaluation of keratometric and total corneal astigmatism measurements from optical biometers and anterior segment tomographers and mapping to reconstructed corneal astigmatism vector components,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-16, January.
Handle:
RePEc:plo:pone00:0313574
DOI: 10.1371/journal.pone.0313574
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.