Author
Listed:
- Chaoqun Huang
- Shangzhi Shu
- Miaomiao Zhou
- Zhenming Sun
- Shuyan Li
Abstract
Purpose: Left atrial thrombus or spontaneous echo contrast (LAT/SEC) are widely recognized as significant contributors to cardiogenic embolism in non-valvular atrial fibrillation (NVAF). This study aimed to construct and validate an interpretable predictive model of LAT/SEC risk in NVAF patients using machine learning (ML) methods. Methods: Electronic medical records (EMR) data of consecutive NVAF patients scheduled for catheter ablation at the First Hospital of Jilin University from October 1, 2022, to February 1, 2024, were analyzed. A retrospective study of 1,222 NVAF patients was conducted. Nine ML algorithms combined with demographic, clinical, and laboratory data were applied to develop prediction models for LAT/SEC in NVAF patients. Feature selection was performed using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. Multiple ML classification models were integrated to identify the optimal model, and Shapley Additive exPlanations (SHAP) interpretation was utilized for personalized risk assessment. Diagnostic performances of the optimal model and the CHA2DS2-VASc scoring system for predicting LAT/SEC risk in NVAF were compared. Results: Among 1,078 patients included, the incidence of LAT/SEC was 10.02%. Six independent predictors, including age, non-paroxysmal AF, diabetes, ischemic stroke or thromboembolism (IS/TE), hyperuricemia, and left atrial diameter (LAD), were identified as the most valuable features. The logistic classification model exhibited the best performance with an area under the receiver operating characteristic curve (AUC) of 0.850, accuracy of 0.812, sensitivity of 0.818, and specificity of 0.780 in the test set. SHAP analysis revealed the contribution of explanatory variables to the model and their relationship with LAT/SEC occurrence. The logistic regression model significantly outperformed the CHA2DS2-VASc scoring system, with AUCs of 0.831 and 0.650, respectively (Z = 7.175, P
Suggested Citation
Chaoqun Huang & Shangzhi Shu & Miaomiao Zhou & Zhenming Sun & Shuyan Li, 2025.
"Development and validation of an interpretable machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-17, January.
Handle:
RePEc:plo:pone00:0313562
DOI: 10.1371/journal.pone.0313562
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313562. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.