Author
Listed:
- Adam Attaheri
- Áine Ní Choisdealbha
- Sinead Rocha
- Perrine Brusini
- Giovanni M Di Liberto
- Natasha Mead
- Helen Olawole-Scott
- Panagiotis Boutris
- Samuel Gibbon
- Isabel Williams
- Christina Grey
- Maria Alfaro e Oliveira
- Carmel Brough
- Sheila Flanagan
- Usha Goswami
Abstract
Cortical signals have been shown to track acoustic and linguistic properties of continuous speech. This phenomenon has been measured in both children and adults, reflecting speech understanding by adults as well as cognitive functions such as attention and prediction. Furthermore, atypical low-frequency cortical tracking of speech is found in children with phonological difficulties (developmental dyslexia). Accordingly, low-frequency cortical signals may play a critical role in language acquisition. A recent investigation with infants Attaheri et al., 2022 [1] probed cortical tracking mechanisms at the ages of 4, 7 and 11 months as participants listened to sung speech. Results from temporal response function (TRF), phase-amplitude coupling (PAC) and dynamic theta-delta power (PSD) analyses indicated speech envelope tracking and stimulus-related power (PSD) for delta and theta neural signals. Furthermore, delta- and theta-driven PAC was found at all ages, with theta phases displaying stronger PAC with high-frequency amplitudes than delta. The present study tests whether these previous findings replicate in the second half of the full cohort of infants (N = 122) who were participating in this longitudinal study (first half: N = 61, (1); second half: N = 61). In addition to demonstrating good replication, we investigate whether cortical tracking in the first year of life predicts later language acquisition for the full cohort (122 infants recruited, 113 retained) using both infant-led and parent-estimated measures and multivariate and univariate analyses. Increased delta cortical tracking in the univariate analyses, increased ~2Hz PSD power and stronger theta-gamma PAC in both multivariate and univariate analyses were related to better language outcomes using both infant-led and parent-estimated measures. By contrast, increased ~4Hz PSD power in the multi-variate analyses, increased delta-beta PAC and a higher theta/delta power ratio in the multi-variate analyses were related to worse language outcomes. The data are interpreted within a “Temporal Sampling” framework for developmental language trajectories.
Suggested Citation
Adam Attaheri & Áine Ní Choisdealbha & Sinead Rocha & Perrine Brusini & Giovanni M Di Liberto & Natasha Mead & Helen Olawole-Scott & Panagiotis Boutris & Samuel Gibbon & Isabel Williams & Christina Gr, 2024.
"Infant low-frequency EEG cortical power, cortical tracking and phase-amplitude coupling predicts language a year later,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-31, December.
Handle:
RePEc:plo:pone00:0313274
DOI: 10.1371/journal.pone.0313274
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0313274. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.