Author
Listed:
- Gengchen Xu
- Jingyun Xu
- Yifan Zhu
Abstract
As the primary power source for electric vehicles, the accurate estimation of the State of Health (SOH) of lithium-ion batteries is crucial for ensuring the reliable operation of the power system. Long Short-Term Memory (LSTM), a special type of recurrent neural network, achieves sequence information estimation through a gating mechanism. However, traditional LSTM-based SOH estimation methods do not account for the fact that the degradation sequence of battery SOH exhibits trend-like nonlinearity and significant dynamic variations between samples. Therefore, this paper proposes an LSTM-based lithium-ion SOH estimation method incorporating data characteristics and spatio-temporal attention. First, considering the trend-like nonlinearity of the degradation sequence, which is initially gradual and then rapid, input features are filtered and divided into trend and non-trend features. Then, to address the significant dynamic variations between samples, especially for capacity regeneration,a spatio-temporal attention mechanism is designed to extract spatio-temporal features from multidimensional non-trend features. Subsequently, an LSTM model is built with trend features, spatio-temporal features, and actual capacity as inputs to estimate capacity. Finally, the model is trained and tested on different datasets. Experimental results demonstrate that the proposed method outperforms traditional methods in terms of SOH estimation accuracy and robustness.
Suggested Citation
Gengchen Xu & Jingyun Xu & Yifan Zhu, 2024.
"LSTM-based estimation of lithium-ion battery SOH using data characteristics and spatio-temporal attention,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-20, December.
Handle:
RePEc:plo:pone00:0312856
DOI: 10.1371/journal.pone.0312856
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312856. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.