Author
Listed:
- Pramod S Kathmore
- Bhanudas D Bachchhav
- Duran Kaya
- Sachin Salunkhe
- Lenka Cepova
- Ondřej Mizera
- Emad Abouel Nasr
Abstract
This study aimed to investigate the impact of a lubricant derived from trimethylolpropane trioleate on power consumption and surface roughness during high-speed drilling of Al-6061, with the goal of developing an environmentally friendly cutting fluid. The study investigated the impact of additive concentration, spindle speed, and feed rate on energy consumption and surface roughness using a Taguchi L27 orthogonal array. Through analysis of the Taguchi experimental outcomes and single-to-noise ratios, the parameters were ranked accordingly. The results of the ANOVA analysis reveal that spindle speed has the greatest impact on Power (87.89%), followed by followed feed rate (6.96%) and additive concentration (2.98%). However, feed rate (43.51%) has the most significant influence on surface roughness, followed by speed (38.48%) and additive concentration (11.90%). Varying additive concentration affects more on surface quality rather than power consumption. Furthermore, a machine learning algorithm was developed to forecast and compare various key aspects of high-speed drilling machinability, including power and surface roughness. Three different measures of accuracy were used to evaluate the performance of the projected values: coefficient of determination (R2), mean absolute percentage error, and mean square error. The decision tree performed better than other models in accurately predicting power and surface roughness. This research introduces an innovative method for assessing the most effective biodegradable cutting fluid and forecasting power and surface quality by developing an optimal combination.
Suggested Citation
Pramod S Kathmore & Bhanudas D Bachchhav & Duran Kaya & Sachin Salunkhe & Lenka Cepova & Ondřej Mizera & Emad Abouel Nasr, 2024.
"Analyzing the efficacy of trimethylolpropane trioleate oil for predicting cutting power and surface roughness in high-speed drilling of Al-6061 through machine learning,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-22, December.
Handle:
RePEc:plo:pone00:0312544
DOI: 10.1371/journal.pone.0312544
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312544. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.