Author
Listed:
- Yumiko Hosaka
- Aki Hirabayashi
- Adam Clark
- Meghan Baker
- Motoyuki Sugai
- John Stelling
- Koji Yahara
Abstract
Surveillance of antimicrobial resistance (AMR) is a crucial strategy to combat AMR. Using routine surveillance data, we could detect and control hospital outbreaks of AMR bacteria as early as possible. Previously, we developed a framework for automatic detection of clusters of AMR bacteria using SaTScan, a free cluster detection tool integrated into WHONET. WHONET is a free software used globally for microbiological surveillance data management. We applied this framework to data from the Japan Nosocomial Infections Surveillance (JANIS), one of the world’s most comprehensive and largest national AMR surveillance systems. Although WHONET-SaTScan has several cluster detection algorithms, no published studies have compared how different algorithms can produce varying results in cluster detection. Here, we conducted a comparison to detect clusters of vancomycin-resistant enterococci (VRE), which has been rare in Japan, by analyzing combinations of resistance to several key antimicrobials (“resistance profiles”) using the comprehensive national routine AMR surveillance data of JANIS and validated the detection capabilities of each algorithm using publicly available reports of VRE clusters. All publicly reported VRE hospital outbreaks were detected as statistical clusters using the space-time uniform algorithm implemented in WHONET-SaTScan. In contrast, only 18.8% of the publicly reported outbreaks were detected using another algorithm (space-time permutation). The space-time uniform algorithm was also effective in identifying hospital wards affected by outbreaks attributed to specific resistance profiles. Although half of the publicly reported outbreaks were attributed to VRE resistant to five particular antimicrobials, four other resistance profiles also contributed to the outbreaks, highlighting the diversity of AMR bacteria within these occurrences. Our comparison revealed a clear advantage in using an algorithm (space-time uniform) for detecting VRE clusters in WHONET-SaTScan based on national surveillance data and further demonstrated the capability to distinguish detected clusters based on resistance profiles.
Suggested Citation
Yumiko Hosaka & Aki Hirabayashi & Adam Clark & Meghan Baker & Motoyuki Sugai & John Stelling & Koji Yahara, 2024.
"Enhanced automated detection of outbreaks of a rare antimicrobial-resistant bacterial species,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-16, October.
Handle:
RePEc:plo:pone00:0312477
DOI: 10.1371/journal.pone.0312477
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312477. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.