IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0312448.html
   My bibliography  Save this article

Mortality prediction of inpatients with NSTEMI in a premier hospital in China based on stacking model

Author

Listed:
  • Li Wang
  • Yu zhang
  • Feng li
  • Caiyun Li
  • Hongzeng Xu

Abstract

Background: Acute myocardial infarction (AMI) remains a leading cause of hospitalization and death in China. Accurate mortality prediction of inpatient is crucial for clinical decision-making of non-ST-segment elevation myocardial infarction (NSTEMI) patients. Methods: In this study, a total of 3061 patients between January 1, 2017 and December 31, 2022 diagnosed with NSTEMI were enrolled in this study. A new method based on Stacking ensemble model is proposed to predict the in-hospital mortality risk of NSTEMI using clinical data. This method mainly consists of three parts. Firstly, oversampling technique was used to alleviate the class imbalance problem. Secondly, the feature selection method of Recursive Feature Elimination (RFE) was selected for effective feature selection. Finally, a unique double-layer stacking model is designed to improve the performance of the algorithm. Seven classical artificial intelligence methods of Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), Adaptive Boosting (ADB), Extra Tree (ET), and Gradient Boosting Decision Tree (GBDT) were selected as candidate models for the base model of the first layer of the model, and extreme gradient enhancement (XGBOOST) was selected as the meta-model for the second layer. Results: Patient were divided into the surviving group and the death group, and a total of 57 clinical features showed statistically significant for the two groups and finally included in the subsequent model. The results show that the Area Under Curve (AUC) of the Stacking model proposed in this paper is 0.987, which is higher than that of LR (0.934), DT (0.946), SVM (0.942), RF (0.948), ADB (0.949), ET (0.938) and GBDT (0.920). At the same time, the proposed Stacking model has higher performance than each single model in terms of Accuracy, Precision, Recall and F1 evaluation indicators. Conclusions: The Stacking model proposed in this paper can integrate the advantages of LR, DT, SVM, RF, ADB, ET and GBDT models to achieve better prediction performance. This model can provide valuable insights for physicians to identify high-risk patients more precisely and timely, thereby maximizing the potential for early clinical interventions to reduce the mortality rate.

Suggested Citation

  • Li Wang & Yu zhang & Feng li & Caiyun Li & Hongzeng Xu, 2024. "Mortality prediction of inpatients with NSTEMI in a premier hospital in China based on stacking model," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-16, December.
  • Handle: RePEc:plo:pone00:0312448
    DOI: 10.1371/journal.pone.0312448
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312448
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0312448&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0312448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.